1021 lines
24 KiB
C
1021 lines
24 KiB
C
/*
|
|
* linux/arch/m32r/kernel/irq.c
|
|
*
|
|
* Copyright (c) 2003, 2004 Hitoshi Yamamoto
|
|
*
|
|
* Taken from i386 2.6.4 version.
|
|
*/
|
|
|
|
/*
|
|
* linux/arch/i386/kernel/irq.c
|
|
*
|
|
* Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
|
|
*
|
|
* This file contains the code used by various IRQ handling routines:
|
|
* asking for different IRQ's should be done through these routines
|
|
* instead of just grabbing them. Thus setups with different IRQ numbers
|
|
* shouldn't result in any weird surprises, and installing new handlers
|
|
* should be easier.
|
|
*/
|
|
|
|
/*
|
|
* (mostly architecture independent, will move to kernel/irq.c in 2.5.)
|
|
*
|
|
* IRQs are in fact implemented a bit like signal handlers for the kernel.
|
|
* Naturally it's not a 1:1 relation, but there are similarities.
|
|
*/
|
|
|
|
#include <linux/config.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/module.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/timex.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/random.h>
|
|
#include <linux/smp_lock.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/kallsyms.h>
|
|
#include <linux/bitops.h>
|
|
|
|
#include <asm/atomic.h>
|
|
#include <asm/io.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/system.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/delay.h>
|
|
#include <asm/irq.h>
|
|
|
|
/*
|
|
* Linux has a controller-independent x86 interrupt architecture.
|
|
* every controller has a 'controller-template', that is used
|
|
* by the main code to do the right thing. Each driver-visible
|
|
* interrupt source is transparently wired to the apropriate
|
|
* controller. Thus drivers need not be aware of the
|
|
* interrupt-controller.
|
|
*
|
|
* Various interrupt controllers we handle: 8259 PIC, SMP IO-APIC,
|
|
* PIIX4's internal 8259 PIC and SGI's Visual Workstation Cobalt (IO-)APIC.
|
|
* (IO-APICs assumed to be messaging to Pentium local-APICs)
|
|
*
|
|
* the code is designed to be easily extended with new/different
|
|
* interrupt controllers, without having to do assembly magic.
|
|
*/
|
|
|
|
/*
|
|
* Controller mappings for all interrupt sources:
|
|
*/
|
|
irq_desc_t irq_desc[NR_IRQS] __cacheline_aligned = {
|
|
[0 ... NR_IRQS-1] = {
|
|
.handler = &no_irq_type,
|
|
.lock = SPIN_LOCK_UNLOCKED
|
|
}
|
|
};
|
|
|
|
static void register_irq_proc (unsigned int irq);
|
|
|
|
/*
|
|
* Special irq handlers.
|
|
*/
|
|
|
|
irqreturn_t no_action(int cpl, void *dev_id, struct pt_regs *regs)
|
|
{ return IRQ_NONE; }
|
|
|
|
/*
|
|
* Generic no controller code
|
|
*/
|
|
|
|
static void enable_none(unsigned int irq) { }
|
|
static unsigned int startup_none(unsigned int irq) { return 0; }
|
|
static void disable_none(unsigned int irq) { }
|
|
static void ack_none(unsigned int irq)
|
|
{
|
|
/*
|
|
* 'what should we do if we get a hw irq event on an illegal vector'.
|
|
* each architecture has to answer this themselves, it doesn't deserve
|
|
* a generic callback i think.
|
|
*/
|
|
printk("unexpected IRQ trap at vector %02x\n", irq);
|
|
}
|
|
|
|
/* startup is the same as "enable", shutdown is same as "disable" */
|
|
#define shutdown_none disable_none
|
|
#define end_none enable_none
|
|
|
|
struct hw_interrupt_type no_irq_type = {
|
|
"none",
|
|
startup_none,
|
|
shutdown_none,
|
|
enable_none,
|
|
disable_none,
|
|
ack_none,
|
|
end_none
|
|
};
|
|
|
|
atomic_t irq_err_count;
|
|
atomic_t irq_mis_count;
|
|
|
|
/*
|
|
* Generic, controller-independent functions:
|
|
*/
|
|
|
|
int show_interrupts(struct seq_file *p, void *v)
|
|
{
|
|
int i = *(loff_t *) v, j;
|
|
struct irqaction * action;
|
|
unsigned long flags;
|
|
|
|
if (i == 0) {
|
|
seq_printf(p, " ");
|
|
for (j=0; j<NR_CPUS; j++)
|
|
if (cpu_online(j))
|
|
seq_printf(p, "CPU%d ",j);
|
|
seq_putc(p, '\n');
|
|
}
|
|
|
|
if (i < NR_IRQS) {
|
|
spin_lock_irqsave(&irq_desc[i].lock, flags);
|
|
action = irq_desc[i].action;
|
|
if (!action)
|
|
goto skip;
|
|
seq_printf(p, "%3d: ",i);
|
|
#ifndef CONFIG_SMP
|
|
seq_printf(p, "%10u ", kstat_irqs(i));
|
|
#else
|
|
for (j = 0; j < NR_CPUS; j++)
|
|
if (cpu_online(j))
|
|
seq_printf(p, "%10u ", kstat_cpu(j).irqs[i]);
|
|
#endif
|
|
seq_printf(p, " %14s", irq_desc[i].handler->typename);
|
|
seq_printf(p, " %s", action->name);
|
|
|
|
for (action=action->next; action; action = action->next)
|
|
seq_printf(p, ", %s", action->name);
|
|
|
|
seq_putc(p, '\n');
|
|
skip:
|
|
spin_unlock_irqrestore(&irq_desc[i].lock, flags);
|
|
} else if (i == NR_IRQS) {
|
|
seq_printf(p, "ERR: %10u\n", atomic_read(&irq_err_count));
|
|
seq_printf(p, "MIS: %10u\n", atomic_read(&irq_mis_count));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
inline void synchronize_irq(unsigned int irq)
|
|
{
|
|
while (irq_desc[irq].status & IRQ_INPROGRESS)
|
|
cpu_relax();
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* This should really return information about whether
|
|
* we should do bottom half handling etc. Right now we
|
|
* end up _always_ checking the bottom half, which is a
|
|
* waste of time and is not what some drivers would
|
|
* prefer.
|
|
*/
|
|
int handle_IRQ_event(unsigned int irq,
|
|
struct pt_regs *regs, struct irqaction *action)
|
|
{
|
|
int status = 1; /* Force the "do bottom halves" bit */
|
|
int ret, retval = 0;
|
|
|
|
if (!(action->flags & SA_INTERRUPT))
|
|
local_irq_enable();
|
|
|
|
do {
|
|
ret = action->handler(irq, action->dev_id, regs);
|
|
if (ret == IRQ_HANDLED)
|
|
status |= action->flags;
|
|
action = action->next;
|
|
retval |= ret;
|
|
} while (action);
|
|
if (status & SA_SAMPLE_RANDOM)
|
|
add_interrupt_randomness(irq);
|
|
local_irq_disable();
|
|
return retval;
|
|
}
|
|
|
|
static void __report_bad_irq(int irq, irq_desc_t *desc, irqreturn_t action_ret)
|
|
{
|
|
struct irqaction *action;
|
|
|
|
if (action_ret != IRQ_HANDLED && action_ret != IRQ_NONE) {
|
|
printk(KERN_ERR "irq event %d: bogus return value %x\n",
|
|
irq, action_ret);
|
|
} else {
|
|
printk(KERN_ERR "irq %d: nobody cared!\n", irq);
|
|
}
|
|
dump_stack();
|
|
printk(KERN_ERR "handlers:\n");
|
|
action = desc->action;
|
|
do {
|
|
printk(KERN_ERR "[<%p>]", action->handler);
|
|
print_symbol(" (%s)",
|
|
(unsigned long)action->handler);
|
|
printk("\n");
|
|
action = action->next;
|
|
} while (action);
|
|
}
|
|
|
|
static void report_bad_irq(int irq, irq_desc_t *desc, irqreturn_t action_ret)
|
|
{
|
|
static int count = 100;
|
|
|
|
if (count) {
|
|
count--;
|
|
__report_bad_irq(irq, desc, action_ret);
|
|
}
|
|
}
|
|
|
|
static int noirqdebug;
|
|
|
|
static int __init noirqdebug_setup(char *str)
|
|
{
|
|
noirqdebug = 1;
|
|
printk("IRQ lockup detection disabled\n");
|
|
return 1;
|
|
}
|
|
|
|
__setup("noirqdebug", noirqdebug_setup);
|
|
|
|
/*
|
|
* If 99,900 of the previous 100,000 interrupts have not been handled then
|
|
* assume that the IRQ is stuck in some manner. Drop a diagnostic and try to
|
|
* turn the IRQ off.
|
|
*
|
|
* (The other 100-of-100,000 interrupts may have been a correctly-functioning
|
|
* device sharing an IRQ with the failing one)
|
|
*
|
|
* Called under desc->lock
|
|
*/
|
|
static void note_interrupt(int irq, irq_desc_t *desc, irqreturn_t action_ret)
|
|
{
|
|
if (action_ret != IRQ_HANDLED) {
|
|
desc->irqs_unhandled++;
|
|
if (action_ret != IRQ_NONE)
|
|
report_bad_irq(irq, desc, action_ret);
|
|
}
|
|
|
|
desc->irq_count++;
|
|
if (desc->irq_count < 100000)
|
|
return;
|
|
|
|
desc->irq_count = 0;
|
|
if (desc->irqs_unhandled > 99900) {
|
|
/*
|
|
* The interrupt is stuck
|
|
*/
|
|
__report_bad_irq(irq, desc, action_ret);
|
|
/*
|
|
* Now kill the IRQ
|
|
*/
|
|
printk(KERN_EMERG "Disabling IRQ #%d\n", irq);
|
|
desc->status |= IRQ_DISABLED;
|
|
desc->handler->disable(irq);
|
|
}
|
|
desc->irqs_unhandled = 0;
|
|
}
|
|
|
|
/*
|
|
* Generic enable/disable code: this just calls
|
|
* down into the PIC-specific version for the actual
|
|
* hardware disable after having gotten the irq
|
|
* controller lock.
|
|
*/
|
|
|
|
/**
|
|
* disable_irq_nosync - disable an irq without waiting
|
|
* @irq: Interrupt to disable
|
|
*
|
|
* Disable the selected interrupt line. Disables and Enables are
|
|
* nested.
|
|
* Unlike disable_irq(), this function does not ensure existing
|
|
* instances of the IRQ handler have completed before returning.
|
|
*
|
|
* This function may be called from IRQ context.
|
|
*/
|
|
|
|
inline void disable_irq_nosync(unsigned int irq)
|
|
{
|
|
irq_desc_t *desc = irq_desc + irq;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&desc->lock, flags);
|
|
if (!desc->depth++) {
|
|
desc->status |= IRQ_DISABLED;
|
|
desc->handler->disable(irq);
|
|
}
|
|
spin_unlock_irqrestore(&desc->lock, flags);
|
|
}
|
|
|
|
/**
|
|
* disable_irq - disable an irq and wait for completion
|
|
* @irq: Interrupt to disable
|
|
*
|
|
* Disable the selected interrupt line. Enables and Disables are
|
|
* nested.
|
|
* This function waits for any pending IRQ handlers for this interrupt
|
|
* to complete before returning. If you use this function while
|
|
* holding a resource the IRQ handler may need you will deadlock.
|
|
*
|
|
* This function may be called - with care - from IRQ context.
|
|
*/
|
|
|
|
void disable_irq(unsigned int irq)
|
|
{
|
|
irq_desc_t *desc = irq_desc + irq;
|
|
disable_irq_nosync(irq);
|
|
if (desc->action)
|
|
synchronize_irq(irq);
|
|
}
|
|
|
|
/**
|
|
* enable_irq - enable handling of an irq
|
|
* @irq: Interrupt to enable
|
|
*
|
|
* Undoes the effect of one call to disable_irq(). If this
|
|
* matches the last disable, processing of interrupts on this
|
|
* IRQ line is re-enabled.
|
|
*
|
|
* This function may be called from IRQ context.
|
|
*/
|
|
|
|
void enable_irq(unsigned int irq)
|
|
{
|
|
irq_desc_t *desc = irq_desc + irq;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&desc->lock, flags);
|
|
switch (desc->depth) {
|
|
case 1: {
|
|
unsigned int status = desc->status & ~IRQ_DISABLED;
|
|
desc->status = status;
|
|
if ((status & (IRQ_PENDING | IRQ_REPLAY)) == IRQ_PENDING) {
|
|
desc->status = status | IRQ_REPLAY;
|
|
hw_resend_irq(desc->handler,irq);
|
|
}
|
|
desc->handler->enable(irq);
|
|
/* fall-through */
|
|
}
|
|
default:
|
|
desc->depth--;
|
|
break;
|
|
case 0:
|
|
printk("enable_irq(%u) unbalanced from %p\n", irq,
|
|
__builtin_return_address(0));
|
|
}
|
|
spin_unlock_irqrestore(&desc->lock, flags);
|
|
}
|
|
|
|
/*
|
|
* do_IRQ handles all normal device IRQ's (the special
|
|
* SMP cross-CPU interrupts have their own specific
|
|
* handlers).
|
|
*/
|
|
asmlinkage unsigned int do_IRQ(int irq, struct pt_regs *regs)
|
|
{
|
|
/*
|
|
* We ack quickly, we don't want the irq controller
|
|
* thinking we're snobs just because some other CPU has
|
|
* disabled global interrupts (we have already done the
|
|
* INT_ACK cycles, it's too late to try to pretend to the
|
|
* controller that we aren't taking the interrupt).
|
|
*
|
|
* 0 return value means that this irq is already being
|
|
* handled by some other CPU. (or is disabled)
|
|
*/
|
|
irq_desc_t *desc = irq_desc + irq;
|
|
struct irqaction * action;
|
|
unsigned int status;
|
|
|
|
irq_enter();
|
|
|
|
#ifdef CONFIG_DEBUG_STACKOVERFLOW
|
|
/* FIXME M32R */
|
|
#endif
|
|
kstat_this_cpu.irqs[irq]++;
|
|
spin_lock(&desc->lock);
|
|
desc->handler->ack(irq);
|
|
/*
|
|
REPLAY is when Linux resends an IRQ that was dropped earlier
|
|
WAITING is used by probe to mark irqs that are being tested
|
|
*/
|
|
status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING);
|
|
status |= IRQ_PENDING; /* we _want_ to handle it */
|
|
|
|
/*
|
|
* If the IRQ is disabled for whatever reason, we cannot
|
|
* use the action we have.
|
|
*/
|
|
action = NULL;
|
|
if (likely(!(status & (IRQ_DISABLED | IRQ_INPROGRESS)))) {
|
|
action = desc->action;
|
|
status &= ~IRQ_PENDING; /* we commit to handling */
|
|
status |= IRQ_INPROGRESS; /* we are handling it */
|
|
}
|
|
desc->status = status;
|
|
|
|
/*
|
|
* If there is no IRQ handler or it was disabled, exit early.
|
|
Since we set PENDING, if another processor is handling
|
|
a different instance of this same irq, the other processor
|
|
will take care of it.
|
|
*/
|
|
if (unlikely(!action))
|
|
goto out;
|
|
|
|
/*
|
|
* Edge triggered interrupts need to remember
|
|
* pending events.
|
|
* This applies to any hw interrupts that allow a second
|
|
* instance of the same irq to arrive while we are in do_IRQ
|
|
* or in the handler. But the code here only handles the _second_
|
|
* instance of the irq, not the third or fourth. So it is mostly
|
|
* useful for irq hardware that does not mask cleanly in an
|
|
* SMP environment.
|
|
*/
|
|
for (;;) {
|
|
irqreturn_t action_ret;
|
|
|
|
spin_unlock(&desc->lock);
|
|
action_ret = handle_IRQ_event(irq, regs, action);
|
|
spin_lock(&desc->lock);
|
|
if (!noirqdebug)
|
|
note_interrupt(irq, desc, action_ret);
|
|
if (likely(!(desc->status & IRQ_PENDING)))
|
|
break;
|
|
desc->status &= ~IRQ_PENDING;
|
|
}
|
|
desc->status &= ~IRQ_INPROGRESS;
|
|
|
|
out:
|
|
/*
|
|
* The ->end() handler has to deal with interrupts which got
|
|
* disabled while the handler was running.
|
|
*/
|
|
desc->handler->end(irq);
|
|
spin_unlock(&desc->lock);
|
|
|
|
irq_exit();
|
|
|
|
#if defined(CONFIG_SMP)
|
|
if (irq == M32R_IRQ_MFT2)
|
|
smp_send_timer();
|
|
#endif /* CONFIG_SMP */
|
|
|
|
return 1;
|
|
}
|
|
|
|
int can_request_irq(unsigned int irq, unsigned long irqflags)
|
|
{
|
|
struct irqaction *action;
|
|
|
|
if (irq >= NR_IRQS)
|
|
return 0;
|
|
action = irq_desc[irq].action;
|
|
if (action) {
|
|
if (irqflags & action->flags & SA_SHIRQ)
|
|
action = NULL;
|
|
}
|
|
return !action;
|
|
}
|
|
|
|
/**
|
|
* request_irq - allocate an interrupt line
|
|
* @irq: Interrupt line to allocate
|
|
* @handler: Function to be called when the IRQ occurs
|
|
* @irqflags: Interrupt type flags
|
|
* @devname: An ascii name for the claiming device
|
|
* @dev_id: A cookie passed back to the handler function
|
|
*
|
|
* This call allocates interrupt resources and enables the
|
|
* interrupt line and IRQ handling. From the point this
|
|
* call is made your handler function may be invoked. Since
|
|
* your handler function must clear any interrupt the board
|
|
* raises, you must take care both to initialise your hardware
|
|
* and to set up the interrupt handler in the right order.
|
|
*
|
|
* Dev_id must be globally unique. Normally the address of the
|
|
* device data structure is used as the cookie. Since the handler
|
|
* receives this value it makes sense to use it.
|
|
*
|
|
* If your interrupt is shared you must pass a non NULL dev_id
|
|
* as this is required when freeing the interrupt.
|
|
*
|
|
* Flags:
|
|
*
|
|
* SA_SHIRQ Interrupt is shared
|
|
*
|
|
* SA_INTERRUPT Disable local interrupts while processing
|
|
*
|
|
* SA_SAMPLE_RANDOM The interrupt can be used for entropy
|
|
*
|
|
*/
|
|
|
|
int request_irq(unsigned int irq,
|
|
irqreturn_t (*handler)(int, void *, struct pt_regs *),
|
|
unsigned long irqflags,
|
|
const char * devname,
|
|
void *dev_id)
|
|
{
|
|
int retval;
|
|
struct irqaction * action;
|
|
|
|
#if 1
|
|
/*
|
|
* Sanity-check: shared interrupts should REALLY pass in
|
|
* a real dev-ID, otherwise we'll have trouble later trying
|
|
* to figure out which interrupt is which (messes up the
|
|
* interrupt freeing logic etc).
|
|
*/
|
|
if (irqflags & SA_SHIRQ) {
|
|
if (!dev_id)
|
|
printk("Bad boy: %s (at 0x%x) called us without a dev_id!\n", devname, (&irq)[-1]);
|
|
}
|
|
#endif
|
|
|
|
if (irq >= NR_IRQS)
|
|
return -EINVAL;
|
|
if (!handler)
|
|
return -EINVAL;
|
|
|
|
action = (struct irqaction *)
|
|
kmalloc(sizeof(struct irqaction), GFP_ATOMIC);
|
|
if (!action)
|
|
return -ENOMEM;
|
|
|
|
action->handler = handler;
|
|
action->flags = irqflags;
|
|
cpus_clear(action->mask);
|
|
action->name = devname;
|
|
action->next = NULL;
|
|
action->dev_id = dev_id;
|
|
|
|
retval = setup_irq(irq, action);
|
|
if (retval)
|
|
kfree(action);
|
|
return retval;
|
|
}
|
|
|
|
EXPORT_SYMBOL(request_irq);
|
|
|
|
/**
|
|
* free_irq - free an interrupt
|
|
* @irq: Interrupt line to free
|
|
* @dev_id: Device identity to free
|
|
*
|
|
* Remove an interrupt handler. The handler is removed and if the
|
|
* interrupt line is no longer in use by any driver it is disabled.
|
|
* On a shared IRQ the caller must ensure the interrupt is disabled
|
|
* on the card it drives before calling this function. The function
|
|
* does not return until any executing interrupts for this IRQ
|
|
* have completed.
|
|
*
|
|
* This function must not be called from interrupt context.
|
|
*/
|
|
|
|
void free_irq(unsigned int irq, void *dev_id)
|
|
{
|
|
irq_desc_t *desc;
|
|
struct irqaction **p;
|
|
unsigned long flags;
|
|
|
|
if (irq >= NR_IRQS)
|
|
return;
|
|
|
|
desc = irq_desc + irq;
|
|
spin_lock_irqsave(&desc->lock,flags);
|
|
p = &desc->action;
|
|
for (;;) {
|
|
struct irqaction * action = *p;
|
|
if (action) {
|
|
struct irqaction **pp = p;
|
|
p = &action->next;
|
|
if (action->dev_id != dev_id)
|
|
continue;
|
|
|
|
/* Found it - now remove it from the list of entries */
|
|
*pp = action->next;
|
|
if (!desc->action) {
|
|
desc->status |= IRQ_DISABLED;
|
|
desc->handler->shutdown(irq);
|
|
}
|
|
spin_unlock_irqrestore(&desc->lock,flags);
|
|
|
|
/* Wait to make sure it's not being used on another CPU */
|
|
synchronize_irq(irq);
|
|
kfree(action);
|
|
return;
|
|
}
|
|
printk("Trying to free free IRQ%d\n",irq);
|
|
spin_unlock_irqrestore(&desc->lock,flags);
|
|
return;
|
|
}
|
|
}
|
|
|
|
EXPORT_SYMBOL(free_irq);
|
|
|
|
/*
|
|
* IRQ autodetection code..
|
|
*
|
|
* This depends on the fact that any interrupt that
|
|
* comes in on to an unassigned handler will get stuck
|
|
* with "IRQ_WAITING" cleared and the interrupt
|
|
* disabled.
|
|
*/
|
|
|
|
static DECLARE_MUTEX(probe_sem);
|
|
|
|
/**
|
|
* probe_irq_on - begin an interrupt autodetect
|
|
*
|
|
* Commence probing for an interrupt. The interrupts are scanned
|
|
* and a mask of potential interrupt lines is returned.
|
|
*
|
|
*/
|
|
|
|
unsigned long probe_irq_on(void)
|
|
{
|
|
unsigned int i;
|
|
irq_desc_t *desc;
|
|
unsigned long val;
|
|
unsigned long delay;
|
|
|
|
down(&probe_sem);
|
|
/*
|
|
* something may have generated an irq long ago and we want to
|
|
* flush such a longstanding irq before considering it as spurious.
|
|
*/
|
|
for (i = NR_IRQS-1; i > 0; i--) {
|
|
desc = irq_desc + i;
|
|
|
|
spin_lock_irq(&desc->lock);
|
|
if (!irq_desc[i].action)
|
|
irq_desc[i].handler->startup(i);
|
|
spin_unlock_irq(&desc->lock);
|
|
}
|
|
|
|
/* Wait for longstanding interrupts to trigger. */
|
|
for (delay = jiffies + HZ/50; time_after(delay, jiffies); )
|
|
/* about 20ms delay */ barrier();
|
|
|
|
/*
|
|
* enable any unassigned irqs
|
|
* (we must startup again here because if a longstanding irq
|
|
* happened in the previous stage, it may have masked itself)
|
|
*/
|
|
for (i = NR_IRQS-1; i > 0; i--) {
|
|
desc = irq_desc + i;
|
|
|
|
spin_lock_irq(&desc->lock);
|
|
if (!desc->action) {
|
|
desc->status |= IRQ_AUTODETECT | IRQ_WAITING;
|
|
if (desc->handler->startup(i))
|
|
desc->status |= IRQ_PENDING;
|
|
}
|
|
spin_unlock_irq(&desc->lock);
|
|
}
|
|
|
|
/*
|
|
* Wait for spurious interrupts to trigger
|
|
*/
|
|
for (delay = jiffies + HZ/10; time_after(delay, jiffies); )
|
|
/* about 100ms delay */ barrier();
|
|
|
|
/*
|
|
* Now filter out any obviously spurious interrupts
|
|
*/
|
|
val = 0;
|
|
for (i = 0; i < NR_IRQS; i++) {
|
|
irq_desc_t *desc = irq_desc + i;
|
|
unsigned int status;
|
|
|
|
spin_lock_irq(&desc->lock);
|
|
status = desc->status;
|
|
|
|
if (status & IRQ_AUTODETECT) {
|
|
/* It triggered already - consider it spurious. */
|
|
if (!(status & IRQ_WAITING)) {
|
|
desc->status = status & ~IRQ_AUTODETECT;
|
|
desc->handler->shutdown(i);
|
|
} else
|
|
if (i < 32)
|
|
val |= 1 << i;
|
|
}
|
|
spin_unlock_irq(&desc->lock);
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
EXPORT_SYMBOL(probe_irq_on);
|
|
|
|
/*
|
|
* Return a mask of triggered interrupts (this
|
|
* can handle only legacy ISA interrupts).
|
|
*/
|
|
|
|
/**
|
|
* probe_irq_mask - scan a bitmap of interrupt lines
|
|
* @val: mask of interrupts to consider
|
|
*
|
|
* Scan the ISA bus interrupt lines and return a bitmap of
|
|
* active interrupts. The interrupt probe logic state is then
|
|
* returned to its previous value.
|
|
*
|
|
* Note: we need to scan all the irq's even though we will
|
|
* only return ISA irq numbers - just so that we reset them
|
|
* all to a known state.
|
|
*/
|
|
unsigned int probe_irq_mask(unsigned long val)
|
|
{
|
|
int i;
|
|
unsigned int mask;
|
|
|
|
mask = 0;
|
|
for (i = 0; i < NR_IRQS; i++) {
|
|
irq_desc_t *desc = irq_desc + i;
|
|
unsigned int status;
|
|
|
|
spin_lock_irq(&desc->lock);
|
|
status = desc->status;
|
|
|
|
if (status & IRQ_AUTODETECT) {
|
|
if (i < 16 && !(status & IRQ_WAITING))
|
|
mask |= 1 << i;
|
|
|
|
desc->status = status & ~IRQ_AUTODETECT;
|
|
desc->handler->shutdown(i);
|
|
}
|
|
spin_unlock_irq(&desc->lock);
|
|
}
|
|
up(&probe_sem);
|
|
|
|
return mask & val;
|
|
}
|
|
|
|
/*
|
|
* Return the one interrupt that triggered (this can
|
|
* handle any interrupt source).
|
|
*/
|
|
|
|
/**
|
|
* probe_irq_off - end an interrupt autodetect
|
|
* @val: mask of potential interrupts (unused)
|
|
*
|
|
* Scans the unused interrupt lines and returns the line which
|
|
* appears to have triggered the interrupt. If no interrupt was
|
|
* found then zero is returned. If more than one interrupt is
|
|
* found then minus the first candidate is returned to indicate
|
|
* their is doubt.
|
|
*
|
|
* The interrupt probe logic state is returned to its previous
|
|
* value.
|
|
*
|
|
* BUGS: When used in a module (which arguably shouldnt happen)
|
|
* nothing prevents two IRQ probe callers from overlapping. The
|
|
* results of this are non-optimal.
|
|
*/
|
|
|
|
int probe_irq_off(unsigned long val)
|
|
{
|
|
int i, irq_found, nr_irqs;
|
|
|
|
nr_irqs = 0;
|
|
irq_found = 0;
|
|
for (i = 0; i < NR_IRQS; i++) {
|
|
irq_desc_t *desc = irq_desc + i;
|
|
unsigned int status;
|
|
|
|
spin_lock_irq(&desc->lock);
|
|
status = desc->status;
|
|
|
|
if (status & IRQ_AUTODETECT) {
|
|
if (!(status & IRQ_WAITING)) {
|
|
if (!nr_irqs)
|
|
irq_found = i;
|
|
nr_irqs++;
|
|
}
|
|
desc->status = status & ~IRQ_AUTODETECT;
|
|
desc->handler->shutdown(i);
|
|
}
|
|
spin_unlock_irq(&desc->lock);
|
|
}
|
|
up(&probe_sem);
|
|
|
|
if (nr_irqs > 1)
|
|
irq_found = -irq_found;
|
|
return irq_found;
|
|
}
|
|
|
|
EXPORT_SYMBOL(probe_irq_off);
|
|
|
|
/* this was setup_x86_irq but it seems pretty generic */
|
|
int setup_irq(unsigned int irq, struct irqaction * new)
|
|
{
|
|
int shared = 0;
|
|
unsigned long flags;
|
|
struct irqaction *old, **p;
|
|
irq_desc_t *desc = irq_desc + irq;
|
|
|
|
if (desc->handler == &no_irq_type)
|
|
return -ENOSYS;
|
|
/*
|
|
* Some drivers like serial.c use request_irq() heavily,
|
|
* so we have to be careful not to interfere with a
|
|
* running system.
|
|
*/
|
|
if (new->flags & SA_SAMPLE_RANDOM) {
|
|
/*
|
|
* This function might sleep, we want to call it first,
|
|
* outside of the atomic block.
|
|
* Yes, this might clear the entropy pool if the wrong
|
|
* driver is attempted to be loaded, without actually
|
|
* installing a new handler, but is this really a problem,
|
|
* only the sysadmin is able to do this.
|
|
*/
|
|
rand_initialize_irq(irq);
|
|
}
|
|
|
|
/*
|
|
* The following block of code has to be executed atomically
|
|
*/
|
|
spin_lock_irqsave(&desc->lock,flags);
|
|
p = &desc->action;
|
|
if ((old = *p) != NULL) {
|
|
/* Can't share interrupts unless both agree to */
|
|
if (!(old->flags & new->flags & SA_SHIRQ)) {
|
|
spin_unlock_irqrestore(&desc->lock,flags);
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* add new interrupt at end of irq queue */
|
|
do {
|
|
p = &old->next;
|
|
old = *p;
|
|
} while (old);
|
|
shared = 1;
|
|
}
|
|
|
|
*p = new;
|
|
|
|
if (!shared) {
|
|
desc->depth = 0;
|
|
desc->status &= ~(IRQ_DISABLED | IRQ_AUTODETECT | IRQ_WAITING | IRQ_INPROGRESS);
|
|
desc->handler->startup(irq);
|
|
}
|
|
spin_unlock_irqrestore(&desc->lock,flags);
|
|
|
|
register_irq_proc(irq);
|
|
return 0;
|
|
}
|
|
|
|
static struct proc_dir_entry * root_irq_dir;
|
|
static struct proc_dir_entry * irq_dir [NR_IRQS];
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
static struct proc_dir_entry *smp_affinity_entry[NR_IRQS];
|
|
|
|
cpumask_t irq_affinity[NR_IRQS] = { [0 ... NR_IRQS-1] = CPU_MASK_ALL };
|
|
|
|
static int irq_affinity_read_proc(char *page, char **start, off_t off,
|
|
int count, int *eof, void *data)
|
|
{
|
|
int len = cpumask_scnprintf(page, count, irq_affinity[(long)data]);
|
|
if (count - len < 2)
|
|
return -EINVAL;
|
|
len += sprintf(page + len, "\n");
|
|
return len;
|
|
}
|
|
|
|
static int irq_affinity_write_proc(struct file *file, const char __user *buffer,
|
|
unsigned long count, void *data)
|
|
{
|
|
int irq = (long)data, full_count = count, err;
|
|
cpumask_t new_value, tmp;
|
|
|
|
if (!irq_desc[irq].handler->set_affinity)
|
|
return -EIO;
|
|
|
|
err = cpumask_parse(buffer, count, new_value);
|
|
if (err)
|
|
return err;
|
|
|
|
/*
|
|
* Do not allow disabling IRQs completely - it's a too easy
|
|
* way to make the system unusable accidentally :-) At least
|
|
* one online CPU still has to be targeted.
|
|
*/
|
|
cpus_and(tmp, new_value, cpu_online_map);
|
|
if (cpus_empty(tmp))
|
|
return -EINVAL;
|
|
|
|
irq_affinity[irq] = new_value;
|
|
irq_desc[irq].handler->set_affinity(irq,
|
|
cpumask_of_cpu(first_cpu(new_value)));
|
|
|
|
return full_count;
|
|
}
|
|
|
|
#endif
|
|
|
|
static int prof_cpu_mask_read_proc (char *page, char **start, off_t off,
|
|
int count, int *eof, void *data)
|
|
{
|
|
int len = cpumask_scnprintf(page, count, *(cpumask_t *)data);
|
|
if (count - len < 2)
|
|
return -EINVAL;
|
|
len += sprintf(page + len, "\n");
|
|
return len;
|
|
}
|
|
|
|
static int prof_cpu_mask_write_proc (struct file *file, const char __user *buffer,
|
|
unsigned long count, void *data)
|
|
{
|
|
cpumask_t *mask = (cpumask_t *)data;
|
|
unsigned long full_count = count, err;
|
|
cpumask_t new_value;
|
|
|
|
err = cpumask_parse(buffer, count, new_value);
|
|
if (err)
|
|
return err;
|
|
|
|
*mask = new_value;
|
|
return full_count;
|
|
}
|
|
|
|
#define MAX_NAMELEN 10
|
|
|
|
static void register_irq_proc (unsigned int irq)
|
|
{
|
|
char name [MAX_NAMELEN];
|
|
|
|
if (!root_irq_dir || (irq_desc[irq].handler == &no_irq_type) ||
|
|
irq_dir[irq])
|
|
return;
|
|
|
|
memset(name, 0, MAX_NAMELEN);
|
|
sprintf(name, "%d", irq);
|
|
|
|
/* create /proc/irq/1234 */
|
|
irq_dir[irq] = proc_mkdir(name, root_irq_dir);
|
|
|
|
#ifdef CONFIG_SMP
|
|
{
|
|
struct proc_dir_entry *entry;
|
|
|
|
/* create /proc/irq/1234/smp_affinity */
|
|
entry = create_proc_entry("smp_affinity", 0600, irq_dir[irq]);
|
|
|
|
if (entry) {
|
|
entry->nlink = 1;
|
|
entry->data = (void *)(long)irq;
|
|
entry->read_proc = irq_affinity_read_proc;
|
|
entry->write_proc = irq_affinity_write_proc;
|
|
}
|
|
|
|
smp_affinity_entry[irq] = entry;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
unsigned long prof_cpu_mask = -1;
|
|
|
|
void init_irq_proc (void)
|
|
{
|
|
struct proc_dir_entry *entry;
|
|
int i;
|
|
|
|
/* create /proc/irq */
|
|
root_irq_dir = proc_mkdir("irq", NULL);
|
|
|
|
/* create /proc/irq/prof_cpu_mask */
|
|
entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir);
|
|
|
|
if (!entry)
|
|
return;
|
|
|
|
entry->nlink = 1;
|
|
entry->data = (void *)&prof_cpu_mask;
|
|
entry->read_proc = prof_cpu_mask_read_proc;
|
|
entry->write_proc = prof_cpu_mask_write_proc;
|
|
|
|
/*
|
|
* Create entries for all existing IRQs.
|
|
*/
|
|
for (i = 0; i < NR_IRQS; i++)
|
|
register_irq_proc(i);
|
|
}
|
|
|