This repository has been archived on 2023-08-20. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files

562 lines
15 KiB
C

/*
* Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
* of PCI-SCSI IO processors.
*
* Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
*
* This driver is derived from the Linux sym53c8xx driver.
* Copyright (C) 1998-2000 Gerard Roudier
*
* The sym53c8xx driver is derived from the ncr53c8xx driver that had been
* a port of the FreeBSD ncr driver to Linux-1.2.13.
*
* The original ncr driver has been written for 386bsd and FreeBSD by
* Wolfgang Stanglmeier <wolf@cologne.de>
* Stefan Esser <se@mi.Uni-Koeln.de>
* Copyright (C) 1994 Wolfgang Stanglmeier
*
* Other major contributions:
*
* NVRAM detection and reading.
* Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
*
*-----------------------------------------------------------------------------
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef SYM_GLUE_H
#define SYM_GLUE_H
#include <linux/config.h>
#include <linux/delay.h>
#include <linux/ioport.h>
#include <linux/pci.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/types.h>
#include <asm/io.h>
#ifdef __sparc__
# include <asm/irq.h>
#endif
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
#ifndef bzero
#define bzero(d, n) memset((d), 0, (n))
#endif
/*
* General driver includes.
*/
#include "sym_conf.h"
#include "sym_defs.h"
#include "sym_misc.h"
/*
* Configuration addendum for Linux.
*/
#define SYM_CONF_TIMER_INTERVAL ((HZ+1)/2)
#define SYM_OPT_HANDLE_DIR_UNKNOWN
#define SYM_OPT_HANDLE_DEVICE_QUEUEING
#define SYM_OPT_LIMIT_COMMAND_REORDERING
#define SYM_OPT_ANNOUNCE_TRANSFER_RATE
/*
* Print a message with severity.
*/
#define printf_emerg(args...) printk(KERN_EMERG args)
#define printf_alert(args...) printk(KERN_ALERT args)
#define printf_crit(args...) printk(KERN_CRIT args)
#define printf_err(args...) printk(KERN_ERR args)
#define printf_warning(args...) printk(KERN_WARNING args)
#define printf_notice(args...) printk(KERN_NOTICE args)
#define printf_info(args...) printk(KERN_INFO args)
#define printf_debug(args...) printk(KERN_DEBUG args)
#define printf(args...) printk(args)
/*
* Insert a delay in micro-seconds
*/
#define sym_udelay(us) udelay(us)
/*
* A 'read barrier' flushes any data that have been prefetched
* by the processor due to out of order execution. Such a barrier
* must notably be inserted prior to looking at data that have
* been DMAed, assuming that program does memory READs in proper
* order and that the device ensured proper ordering of WRITEs.
*
* A 'write barrier' prevents any previous WRITEs to pass further
* WRITEs. Such barriers must be inserted each time another agent
* relies on ordering of WRITEs.
*
* Note that, due to posting of PCI memory writes, we also must
* insert dummy PCI read transactions when some ordering involving
* both directions over the PCI does matter. PCI transactions are
* fully ordered in each direction.
*/
#define MEMORY_READ_BARRIER() rmb()
#define MEMORY_WRITE_BARRIER() wmb()
/*
* Let the compiler know about driver data structure names.
*/
typedef struct sym_tcb *tcb_p;
typedef struct sym_lcb *lcb_p;
typedef struct sym_ccb *ccb_p;
typedef struct sym_hcb *hcb_p;
/*
* Define a reference to the O/S dependent IO request.
*/
typedef struct scsi_cmnd *cam_ccb_p; /* Generic */
typedef struct scsi_cmnd *cam_scsiio_p;/* SCSI I/O */
/*
* IO functions definition for big/little endian CPU support.
* For now, PCI chips are only supported in little endian addressing mode,
*/
#ifdef __BIG_ENDIAN
#define inw_l2b inw
#define inl_l2b inl
#define outw_b2l outw
#define outl_b2l outl
#define readw_l2b readw
#define readl_l2b readl
#define writew_b2l writew
#define writel_b2l writel
#else /* little endian */
#define inw_raw inw
#define inl_raw inl
#define outw_raw outw
#define outl_raw outl
#define readw_raw readw
#define readl_raw readl
#define writew_raw writew
#define writel_raw writel
#endif /* endian */
#ifdef SYM_CONF_CHIP_BIG_ENDIAN
#error "Chips in BIG ENDIAN addressing mode are not (yet) supported"
#endif
/*
* If the chip uses big endian addressing mode over the
* PCI, actual io register addresses for byte and word
* accesses must be changed according to lane routing.
* Btw, sym_offb() and sym_offw() macros only apply to
* constants and so donnot generate bloated code.
*/
#if defined(SYM_CONF_CHIP_BIG_ENDIAN)
#define sym_offb(o) (((o)&~3)+((~((o)&3))&3))
#define sym_offw(o) (((o)&~3)+((~((o)&3))&2))
#else
#define sym_offb(o) (o)
#define sym_offw(o) (o)
#endif
/*
* If the CPU and the chip use same endian-ness addressing,
* no byte reordering is needed for script patching.
* Macro cpu_to_scr() is to be used for script patching.
* Macro scr_to_cpu() is to be used for getting a DWORD
* from the script.
*/
#if defined(__BIG_ENDIAN) && !defined(SYM_CONF_CHIP_BIG_ENDIAN)
#define cpu_to_scr(dw) cpu_to_le32(dw)
#define scr_to_cpu(dw) le32_to_cpu(dw)
#elif defined(__LITTLE_ENDIAN) && defined(SYM_CONF_CHIP_BIG_ENDIAN)
#define cpu_to_scr(dw) cpu_to_be32(dw)
#define scr_to_cpu(dw) be32_to_cpu(dw)
#else
#define cpu_to_scr(dw) (dw)
#define scr_to_cpu(dw) (dw)
#endif
/*
* Access to the controller chip.
*
* If SYM_CONF_IOMAPPED is defined, the driver will use
* normal IOs instead of the MEMORY MAPPED IO method
* recommended by PCI specifications.
* If all PCI bridges, host brigdes and architectures
* would have been correctly designed for PCI, this
* option would be useless.
*
* If the CPU and the chip use same endian-ness addressing,
* no byte reordering is needed for accessing chip io
* registers. Functions suffixed by '_raw' are assumed
* to access the chip over the PCI without doing byte
* reordering. Functions suffixed by '_l2b' are
* assumed to perform little-endian to big-endian byte
* reordering, those suffixed by '_b2l' blah, blah,
* blah, ...
*/
#if defined(SYM_CONF_IOMAPPED)
/*
* IO mapped only input / ouput
*/
#define INB_OFF(o) inb (np->s.io_port + sym_offb(o))
#define OUTB_OFF(o, val) outb ((val), np->s.io_port + sym_offb(o))
#if defined(__BIG_ENDIAN) && !defined(SYM_CONF_CHIP_BIG_ENDIAN)
#define INW_OFF(o) inw_l2b (np->s.io_port + sym_offw(o))
#define INL_OFF(o) inl_l2b (np->s.io_port + (o))
#define OUTW_OFF(o, val) outw_b2l ((val), np->s.io_port + sym_offw(o))
#define OUTL_OFF(o, val) outl_b2l ((val), np->s.io_port + (o))
#elif defined(__LITTLE_ENDIAN) && defined(SYM_CONF_CHIP_BIG_ENDIAN)
#define INW_OFF(o) inw_b2l (np->s.io_port + sym_offw(o))
#define INL_OFF(o) inl_b2l (np->s.io_port + (o))
#define OUTW_OFF(o, val) outw_l2b ((val), np->s.io_port + sym_offw(o))
#define OUTL_OFF(o, val) outl_l2b ((val), np->s.io_port + (o))
#else
#define INW_OFF(o) inw_raw (np->s.io_port + sym_offw(o))
#define INL_OFF(o) inl_raw (np->s.io_port + (o))
#define OUTW_OFF(o, val) outw_raw ((val), np->s.io_port + sym_offw(o))
#define OUTL_OFF(o, val) outl_raw ((val), np->s.io_port + (o))
#endif /* ENDIANs */
#else /* defined SYM_CONF_IOMAPPED */
/*
* MEMORY mapped IO input / output
*/
#define INB_OFF(o) readb(np->s.mmio_va + sym_offb(o))
#define OUTB_OFF(o, val) writeb((val), np->s.mmio_va + sym_offb(o))
#if defined(__BIG_ENDIAN) && !defined(SYM_CONF_CHIP_BIG_ENDIAN)
#define INW_OFF(o) readw_l2b(np->s.mmio_va + sym_offw(o))
#define INL_OFF(o) readl_l2b(np->s.mmio_va + (o))
#define OUTW_OFF(o, val) writew_b2l((val), np->s.mmio_va + sym_offw(o))
#define OUTL_OFF(o, val) writel_b2l((val), np->s.mmio_va + (o))
#elif defined(__LITTLE_ENDIAN) && defined(SYM_CONF_CHIP_BIG_ENDIAN)
#define INW_OFF(o) readw_b2l(np->s.mmio_va + sym_offw(o))
#define INL_OFF(o) readl_b2l(np->s.mmio_va + (o))
#define OUTW_OFF(o, val) writew_l2b((val), np->s.mmio_va + sym_offw(o))
#define OUTL_OFF(o, val) writel_l2b((val), np->s.mmio_va + (o))
#else
#define INW_OFF(o) readw_raw(np->s.mmio_va + sym_offw(o))
#define INL_OFF(o) readl_raw(np->s.mmio_va + (o))
#define OUTW_OFF(o, val) writew_raw((val), np->s.mmio_va + sym_offw(o))
#define OUTL_OFF(o, val) writel_raw((val), np->s.mmio_va + (o))
#endif
#endif /* defined SYM_CONF_IOMAPPED */
#define OUTRAM_OFF(o, a, l) memcpy_toio(np->s.ram_va + (o), (a), (l))
/*
* Remap some status field values.
*/
#define CAM_REQ_CMP DID_OK
#define CAM_SEL_TIMEOUT DID_NO_CONNECT
#define CAM_CMD_TIMEOUT DID_TIME_OUT
#define CAM_REQ_ABORTED DID_ABORT
#define CAM_UNCOR_PARITY DID_PARITY
#define CAM_SCSI_BUS_RESET DID_RESET
#define CAM_REQUEUE_REQ DID_SOFT_ERROR
#define CAM_UNEXP_BUSFREE DID_ERROR
#define CAM_SCSI_BUSY DID_BUS_BUSY
#define CAM_DEV_NOT_THERE DID_NO_CONNECT
#define CAM_REQ_INVALID DID_ERROR
#define CAM_REQ_TOO_BIG DID_ERROR
#define CAM_RESRC_UNAVAIL DID_ERROR
/*
* Remap data direction values.
*/
#define CAM_DIR_NONE DMA_NONE
#define CAM_DIR_IN DMA_FROM_DEVICE
#define CAM_DIR_OUT DMA_TO_DEVICE
#define CAM_DIR_UNKNOWN DMA_BIDIRECTIONAL
/*
* These ones are used as return code from
* error recovery handlers under Linux.
*/
#define SCSI_SUCCESS SUCCESS
#define SCSI_FAILED FAILED
/*
* System specific target data structure.
* None for now, under Linux.
*/
/* #define SYM_HAVE_STCB */
/*
* System specific lun data structure.
*/
#define SYM_HAVE_SLCB
struct sym_slcb {
u_short reqtags; /* Number of tags requested by user */
u_short scdev_depth; /* Queue depth set in select_queue_depth() */
};
/*
* System specific command data structure.
* Not needed under Linux.
*/
/* struct sym_sccb */
/*
* System specific host data structure.
*/
struct sym_shcb {
/*
* Chip and controller indentification.
*/
int unit;
char inst_name[16];
char chip_name[8];
struct pci_dev *device;
struct Scsi_Host *host;
void __iomem * mmio_va; /* MMIO kernel virtual address */
void __iomem * ram_va; /* RAM kernel virtual address */
u_long io_port; /* IO port address cookie */
u_short io_ws; /* IO window size */
int irq; /* IRQ number */
struct timer_list timer; /* Timer handler link header */
u_long lasttime;
u_long settle_time; /* Resetting the SCSI BUS */
u_char settle_time_valid;
};
/*
* Return the name of the controller.
*/
#define sym_name(np) (np)->s.inst_name
/*
* Data structure used as input for the NVRAM reading.
* Must resolve the IO macros and sym_name(), when
* used as sub-field 's' of another structure.
*/
struct sym_slot {
u_long base;
u_long base_2;
u_long base_c;
u_long base_2_c;
int irq;
/* port and address fields to fit INB, OUTB macros */
u_long io_port;
void __iomem * mmio_va;
char inst_name[16];
};
struct sym_nvram;
struct sym_device {
struct pci_dev *pdev;
struct sym_slot s;
struct sym_pci_chip chip;
struct sym_nvram *nvram;
u_short device_id;
u_char host_id;
};
/*
* Driver host data structure.
*/
struct host_data {
struct sym_hcb *ncb;
};
/*
* The driver definitions (sym_hipd.h) must know about a
* couple of things related to the memory allocator.
*/
typedef u_long m_addr_t; /* Enough bits to represent any address */
#define SYM_MEM_PAGE_ORDER 0 /* 1 PAGE maximum */
#define SYM_MEM_CLUSTER_SHIFT (PAGE_SHIFT+SYM_MEM_PAGE_ORDER)
#ifdef MODULE
#define SYM_MEM_FREE_UNUSED /* Free unused pages immediately */
#endif
typedef struct pci_dev *m_pool_ident_t;
/*
* Include driver soft definitions.
*/
#include "sym_fw.h"
#include "sym_hipd.h"
/*
* Memory allocator related stuff.
*/
#define SYM_MEM_GFP_FLAGS GFP_ATOMIC
#define SYM_MEM_WARN 1 /* Warn on failed operations */
#define sym_get_mem_cluster() \
__get_free_pages(SYM_MEM_GFP_FLAGS, SYM_MEM_PAGE_ORDER)
#define sym_free_mem_cluster(p) \
free_pages(p, SYM_MEM_PAGE_ORDER)
void *sym_calloc(int size, char *name);
void sym_mfree(void *m, int size, char *name);
/*
* We have to provide the driver memory allocator with methods for
* it to maintain virtual to bus physical address translations.
*/
#define sym_m_pool_match(mp_id1, mp_id2) (mp_id1 == mp_id2)
static __inline m_addr_t sym_m_get_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp)
{
void *vaddr = NULL;
dma_addr_t baddr = 0;
vaddr = pci_alloc_consistent(mp->dev_dmat,SYM_MEM_CLUSTER_SIZE, &baddr);
if (vaddr) {
vbp->vaddr = (m_addr_t) vaddr;
vbp->baddr = (m_addr_t) baddr;
}
return (m_addr_t) vaddr;
}
static __inline void sym_m_free_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp)
{
pci_free_consistent(mp->dev_dmat, SYM_MEM_CLUSTER_SIZE,
(void *)vbp->vaddr, (dma_addr_t)vbp->baddr);
}
#define sym_m_create_dma_mem_tag(mp) (0)
#define sym_m_delete_dma_mem_tag(mp) do { ; } while (0)
void *__sym_calloc_dma(m_pool_ident_t dev_dmat, int size, char *name);
void __sym_mfree_dma(m_pool_ident_t dev_dmat, void *m, int size, char *name);
m_addr_t __vtobus(m_pool_ident_t dev_dmat, void *m);
/*
* Set the status field of a CAM CCB.
*/
static __inline void
sym_set_cam_status(struct scsi_cmnd *ccb, int status)
{
ccb->result &= ~(0xff << 16);
ccb->result |= (status << 16);
}
/*
* Get the status field of a CAM CCB.
*/
static __inline int
sym_get_cam_status(struct scsi_cmnd *ccb)
{
return ((ccb->result >> 16) & 0xff);
}
/*
* The dma mapping is mostly handled by the
* SCSI layer and the driver glue under Linux.
*/
#define sym_data_dmamap_create(np, cp) (0)
#define sym_data_dmamap_destroy(np, cp) do { ; } while (0)
#define sym_data_dmamap_unload(np, cp) do { ; } while (0)
#define sym_data_dmamap_presync(np, cp) do { ; } while (0)
#define sym_data_dmamap_postsync(np, cp) do { ; } while (0)
/*
* Async handler for negotiations.
*/
void sym_xpt_async_nego_wide(hcb_p np, int target);
#define sym_xpt_async_nego_sync(np, target) \
sym_announce_transfer_rate(np, target)
#define sym_xpt_async_nego_ppr(np, target) \
sym_announce_transfer_rate(np, target)
/*
* Build CAM result for a successful IO and for a failed IO.
*/
static __inline void sym_set_cam_result_ok(hcb_p np, ccb_p cp, int resid)
{
struct scsi_cmnd *cmd = cp->cam_ccb;
cmd->resid = resid;
cmd->result = (((DID_OK) << 16) + ((cp->ssss_status) & 0x7f));
}
void sym_set_cam_result_error(hcb_p np, ccb_p cp, int resid);
/*
* Other O/S specific methods.
*/
#define sym_cam_target_id(ccb) (ccb)->target
#define sym_cam_target_lun(ccb) (ccb)->lun
#define sym_freeze_cam_ccb(ccb) do { ; } while (0)
void sym_xpt_done(hcb_p np, cam_ccb_p ccb);
void sym_xpt_done2(hcb_p np, cam_ccb_p ccb, int cam_status);
void sym_print_addr (ccb_p cp);
void sym_xpt_async_bus_reset(hcb_p np);
void sym_xpt_async_sent_bdr(hcb_p np, int target);
int sym_setup_data_and_start (hcb_p np, cam_scsiio_p csio, ccb_p cp);
void sym_log_bus_error(hcb_p np);
void sym_sniff_inquiry(hcb_p np, struct scsi_cmnd *cmd, int resid);
#endif /* SYM_GLUE_H */