This repository has been archived on 2023-08-20. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
RescueBootCD/extra/linux-2.6.10/mm/page_alloc.c

2090 lines
51 KiB
C

/*
* linux/mm/page_alloc.c
*
* Manages the free list, the system allocates free pages here.
* Note that kmalloc() lives in slab.c
*
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
* Swap reorganised 29.12.95, Stephen Tweedie
* Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
* Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
* Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
* Zone balancing, Kanoj Sarcar, SGI, Jan 2000
* Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
* (lots of bits borrowed from Ingo Molnar & Andrew Morton)
*/
#include <linux/config.h>
#include <linux/stddef.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
#include <linux/bootmem.h>
#include <linux/compiler.h>
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
#include <linux/notifier.h>
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/nodemask.h>
#include <asm/tlbflush.h>
nodemask_t node_online_map = NODE_MASK_NONE;
nodemask_t node_possible_map = NODE_MASK_ALL;
struct pglist_data *pgdat_list;
unsigned long totalram_pages;
unsigned long totalhigh_pages;
long nr_swap_pages;
int numnodes = 1;
int sysctl_lower_zone_protection = 0;
EXPORT_SYMBOL(totalram_pages);
EXPORT_SYMBOL(nr_swap_pages);
/*
* Used by page_zone() to look up the address of the struct zone whose
* id is encoded in the upper bits of page->flags
*/
struct zone *zone_table[1 << (ZONES_SHIFT + NODES_SHIFT)];
EXPORT_SYMBOL(zone_table);
static char *zone_names[MAX_NR_ZONES] = { "DMA", "Normal", "HighMem" };
int min_free_kbytes = 1024;
unsigned long __initdata nr_kernel_pages;
unsigned long __initdata nr_all_pages;
/*
* Temporary debugging check for pages not lying within a given zone.
*/
static int bad_range(struct zone *zone, struct page *page)
{
if (page_to_pfn(page) >= zone->zone_start_pfn + zone->spanned_pages)
return 1;
if (page_to_pfn(page) < zone->zone_start_pfn)
return 1;
if (zone != page_zone(page))
return 1;
return 0;
}
static void bad_page(const char *function, struct page *page)
{
printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n",
function, current->comm, page);
printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
(int)(2*sizeof(page_flags_t)), (unsigned long)page->flags,
page->mapping, page_mapcount(page), page_count(page));
printk(KERN_EMERG "Backtrace:\n");
dump_stack();
printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n");
page->flags &= ~(1 << PG_private |
1 << PG_locked |
1 << PG_lru |
1 << PG_active |
1 << PG_dirty |
1 << PG_swapcache |
1 << PG_writeback);
set_page_count(page, 0);
reset_page_mapcount(page);
page->mapping = NULL;
tainted |= TAINT_BAD_PAGE;
}
#ifndef CONFIG_HUGETLB_PAGE
#define prep_compound_page(page, order) do { } while (0)
#define destroy_compound_page(page, order) do { } while (0)
#else
/*
* Higher-order pages are called "compound pages". They are structured thusly:
*
* The first PAGE_SIZE page is called the "head page".
*
* The remaining PAGE_SIZE pages are called "tail pages".
*
* All pages have PG_compound set. All pages have their ->private pointing at
* the head page (even the head page has this).
*
* The first tail page's ->mapping, if non-zero, holds the address of the
* compound page's put_page() function.
*
* The order of the allocation is stored in the first tail page's ->index
* This is only for debug at present. This usage means that zero-order pages
* may not be compound.
*/
static void prep_compound_page(struct page *page, unsigned long order)
{
int i;
int nr_pages = 1 << order;
page[1].mapping = NULL;
page[1].index = order;
for (i = 0; i < nr_pages; i++) {
struct page *p = page + i;
SetPageCompound(p);
p->private = (unsigned long)page;
}
}
static void destroy_compound_page(struct page *page, unsigned long order)
{
int i;
int nr_pages = 1 << order;
if (!PageCompound(page))
return;
if (page[1].index != order)
bad_page(__FUNCTION__, page);
for (i = 0; i < nr_pages; i++) {
struct page *p = page + i;
if (!PageCompound(p))
bad_page(__FUNCTION__, page);
if (p->private != (unsigned long)page)
bad_page(__FUNCTION__, page);
ClearPageCompound(p);
}
}
#endif /* CONFIG_HUGETLB_PAGE */
/*
* Freeing function for a buddy system allocator.
*
* The concept of a buddy system is to maintain direct-mapped table
* (containing bit values) for memory blocks of various "orders".
* The bottom level table contains the map for the smallest allocatable
* units of memory (here, pages), and each level above it describes
* pairs of units from the levels below, hence, "buddies".
* At a high level, all that happens here is marking the table entry
* at the bottom level available, and propagating the changes upward
* as necessary, plus some accounting needed to play nicely with other
* parts of the VM system.
* At each level, we keep one bit for each pair of blocks, which
* is set to 1 iff only one of the pair is allocated. So when we
* are allocating or freeing one, we can derive the state of the
* other. That is, if we allocate a small block, and both were
* free, the remainder of the region must be split into blocks.
* If a block is freed, and its buddy is also free, then this
* triggers coalescing into a block of larger size.
*
* -- wli
*/
static inline void __free_pages_bulk (struct page *page, struct page *base,
struct zone *zone, struct free_area *area, unsigned int order)
{
unsigned long page_idx, index, mask;
if (order)
destroy_compound_page(page, order);
mask = (~0UL) << order;
page_idx = page - base;
if (page_idx & ~mask)
BUG();
index = page_idx >> (1 + order);
zone->free_pages += 1 << order;
while (order < MAX_ORDER-1) {
struct page *buddy1, *buddy2;
BUG_ON(area >= zone->free_area + MAX_ORDER);
if (!__test_and_change_bit(index, area->map))
/*
* the buddy page is still allocated.
*/
break;
/* Move the buddy up one level. */
buddy1 = base + (page_idx ^ (1 << order));
buddy2 = base + page_idx;
BUG_ON(bad_range(zone, buddy1));
BUG_ON(bad_range(zone, buddy2));
list_del(&buddy1->lru);
mask <<= 1;
order++;
area++;
index >>= 1;
page_idx &= mask;
}
list_add(&(base + page_idx)->lru, &area->free_list);
}
static inline void free_pages_check(const char *function, struct page *page)
{
if ( page_mapped(page) ||
page->mapping != NULL ||
page_count(page) != 0 ||
(page->flags & (
1 << PG_lru |
1 << PG_private |
1 << PG_locked |
1 << PG_active |
1 << PG_reclaim |
1 << PG_slab |
1 << PG_swapcache |
1 << PG_writeback )))
bad_page(function, page);
if (PageDirty(page))
ClearPageDirty(page);
}
/*
* Frees a list of pages.
* Assumes all pages on list are in same zone, and of same order.
* count is the number of pages to free, or 0 for all on the list.
*
* If the zone was previously in an "all pages pinned" state then look to
* see if this freeing clears that state.
*
* And clear the zone's pages_scanned counter, to hold off the "all pages are
* pinned" detection logic.
*/
static int
free_pages_bulk(struct zone *zone, int count,
struct list_head *list, unsigned int order)
{
unsigned long flags;
struct free_area *area;
struct page *base, *page = NULL;
int ret = 0;
base = zone->zone_mem_map;
area = zone->free_area + order;
spin_lock_irqsave(&zone->lock, flags);
zone->all_unreclaimable = 0;
zone->pages_scanned = 0;
while (!list_empty(list) && count--) {
page = list_entry(list->prev, struct page, lru);
/* have to delete it as __free_pages_bulk list manipulates */
list_del(&page->lru);
__free_pages_bulk(page, base, zone, area, order);
ret++;
}
spin_unlock_irqrestore(&zone->lock, flags);
return ret;
}
void __free_pages_ok(struct page *page, unsigned int order)
{
LIST_HEAD(list);
int i;
arch_free_page(page, order);
mod_page_state(pgfree, 1 << order);
for (i = 0 ; i < (1 << order) ; ++i)
free_pages_check(__FUNCTION__, page + i);
list_add(&page->lru, &list);
kernel_map_pages(page, 1<<order, 0);
free_pages_bulk(page_zone(page), 1, &list, order);
}
#define MARK_USED(index, order, area) \
__change_bit((index) >> (1+(order)), (area)->map)
/*
* The order of subdivision here is critical for the IO subsystem.
* Please do not alter this order without good reasons and regression
* testing. Specifically, as large blocks of memory are subdivided,
* the order in which smaller blocks are delivered depends on the order
* they're subdivided in this function. This is the primary factor
* influencing the order in which pages are delivered to the IO
* subsystem according to empirical testing, and this is also justified
* by considering the behavior of a buddy system containing a single
* large block of memory acted on by a series of small allocations.
* This behavior is a critical factor in sglist merging's success.
*
* -- wli
*/
static inline struct page *
expand(struct zone *zone, struct page *page,
unsigned long index, int low, int high, struct free_area *area)
{
unsigned long size = 1 << high;
while (high > low) {
area--;
high--;
size >>= 1;
BUG_ON(bad_range(zone, &page[size]));
list_add(&page[size].lru, &area->free_list);
MARK_USED(index + size, high, area);
}
return page;
}
static inline void set_page_refs(struct page *page, int order)
{
#ifdef CONFIG_MMU
set_page_count(page, 1);
#else
int i;
/*
* We need to reference all the pages for this order, otherwise if
* anyone accesses one of the pages with (get/put) it will be freed.
*/
for (i = 0; i < (1 << order); i++)
set_page_count(page+i, 1);
#endif /* CONFIG_MMU */
}
/*
* This page is about to be returned from the page allocator
*/
static void prep_new_page(struct page *page, int order)
{
if (page->mapping || page_mapped(page) ||
(page->flags & (
1 << PG_private |
1 << PG_locked |
1 << PG_lru |
1 << PG_active |
1 << PG_dirty |
1 << PG_reclaim |
1 << PG_swapcache |
1 << PG_writeback )))
bad_page(__FUNCTION__, page);
page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
1 << PG_referenced | 1 << PG_arch_1 |
1 << PG_checked | 1 << PG_mappedtodisk);
page->private = 0;
set_page_refs(page, order);
}
/*
* Do the hard work of removing an element from the buddy allocator.
* Call me with the zone->lock already held.
*/
static struct page *__rmqueue(struct zone *zone, unsigned int order)
{
struct free_area * area;
unsigned int current_order;
struct page *page;
unsigned int index;
for (current_order = order; current_order < MAX_ORDER; ++current_order) {
area = zone->free_area + current_order;
if (list_empty(&area->free_list))
continue;
page = list_entry(area->free_list.next, struct page, lru);
list_del(&page->lru);
index = page - zone->zone_mem_map;
if (current_order != MAX_ORDER-1)
MARK_USED(index, current_order, area);
zone->free_pages -= 1UL << order;
return expand(zone, page, index, order, current_order, area);
}
return NULL;
}
/*
* Obtain a specified number of elements from the buddy allocator, all under
* a single hold of the lock, for efficiency. Add them to the supplied list.
* Returns the number of new pages which were placed at *list.
*/
static int rmqueue_bulk(struct zone *zone, unsigned int order,
unsigned long count, struct list_head *list)
{
unsigned long flags;
int i;
int allocated = 0;
struct page *page;
spin_lock_irqsave(&zone->lock, flags);
for (i = 0; i < count; ++i) {
page = __rmqueue(zone, order);
if (page == NULL)
break;
allocated++;
list_add_tail(&page->lru, list);
}
spin_unlock_irqrestore(&zone->lock, flags);
return allocated;
}
#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
static void __drain_pages(unsigned int cpu)
{
struct zone *zone;
int i;
for_each_zone(zone) {
struct per_cpu_pageset *pset;
pset = &zone->pageset[cpu];
for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
struct per_cpu_pages *pcp;
pcp = &pset->pcp[i];
pcp->count -= free_pages_bulk(zone, pcp->count,
&pcp->list, 0);
}
}
}
#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
#ifdef CONFIG_PM
int is_head_of_free_region(struct page *page)
{
struct zone *zone = page_zone(page);
unsigned long flags;
int order;
struct list_head *curr;
/*
* Should not matter as we need quiescent system for
* suspend anyway, but...
*/
spin_lock_irqsave(&zone->lock, flags);
for (order = MAX_ORDER - 1; order >= 0; --order)
list_for_each(curr, &zone->free_area[order].free_list)
if (page == list_entry(curr, struct page, lru)) {
spin_unlock_irqrestore(&zone->lock, flags);
return 1 << order;
}
spin_unlock_irqrestore(&zone->lock, flags);
return 0;
}
/*
* Spill all of this CPU's per-cpu pages back into the buddy allocator.
*/
void drain_local_pages(void)
{
unsigned long flags;
local_irq_save(flags);
__drain_pages(smp_processor_id());
local_irq_restore(flags);
}
#endif /* CONFIG_PM */
static void zone_statistics(struct zonelist *zonelist, struct zone *z)
{
#ifdef CONFIG_NUMA
unsigned long flags;
int cpu;
pg_data_t *pg = z->zone_pgdat;
pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
struct per_cpu_pageset *p;
local_irq_save(flags);
cpu = smp_processor_id();
p = &z->pageset[cpu];
if (pg == orig) {
z->pageset[cpu].numa_hit++;
} else {
p->numa_miss++;
zonelist->zones[0]->pageset[cpu].numa_foreign++;
}
if (pg == NODE_DATA(numa_node_id()))
p->local_node++;
else
p->other_node++;
local_irq_restore(flags);
#endif
}
/*
* Free a 0-order page
*/
static void FASTCALL(free_hot_cold_page(struct page *page, int cold));
static void fastcall free_hot_cold_page(struct page *page, int cold)
{
struct zone *zone = page_zone(page);
struct per_cpu_pages *pcp;
unsigned long flags;
arch_free_page(page, 0);
kernel_map_pages(page, 1, 0);
inc_page_state(pgfree);
if (PageAnon(page))
page->mapping = NULL;
free_pages_check(__FUNCTION__, page);
pcp = &zone->pageset[get_cpu()].pcp[cold];
local_irq_save(flags);
if (pcp->count >= pcp->high)
pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
list_add(&page->lru, &pcp->list);
pcp->count++;
local_irq_restore(flags);
put_cpu();
}
void fastcall free_hot_page(struct page *page)
{
free_hot_cold_page(page, 0);
}
void fastcall free_cold_page(struct page *page)
{
free_hot_cold_page(page, 1);
}
/*
* Really, prep_compound_page() should be called from __rmqueue_bulk(). But
* we cheat by calling it from here, in the order > 0 path. Saves a branch
* or two.
*/
static struct page *
buffered_rmqueue(struct zone *zone, int order, int gfp_flags)
{
unsigned long flags;
struct page *page = NULL;
int cold = !!(gfp_flags & __GFP_COLD);
if (order == 0) {
struct per_cpu_pages *pcp;
pcp = &zone->pageset[get_cpu()].pcp[cold];
local_irq_save(flags);
if (pcp->count <= pcp->low)
pcp->count += rmqueue_bulk(zone, 0,
pcp->batch, &pcp->list);
if (pcp->count) {
page = list_entry(pcp->list.next, struct page, lru);
list_del(&page->lru);
pcp->count--;
}
local_irq_restore(flags);
put_cpu();
}
if (page == NULL) {
spin_lock_irqsave(&zone->lock, flags);
page = __rmqueue(zone, order);
spin_unlock_irqrestore(&zone->lock, flags);
}
if (page != NULL) {
BUG_ON(bad_range(zone, page));
mod_page_state_zone(zone, pgalloc, 1 << order);
prep_new_page(page, order);
if (order && (gfp_flags & __GFP_COMP))
prep_compound_page(page, order);
}
return page;
}
/*
* This is the 'heart' of the zoned buddy allocator.
*
* Herein lies the mysterious "incremental min". That's the
*
* local_low = z->pages_low;
* min += local_low;
*
* thing. The intent here is to provide additional protection to low zones for
* allocation requests which _could_ use higher zones. So a GFP_HIGHMEM
* request is not allowed to dip as deeply into the normal zone as a GFP_KERNEL
* request. This preserves additional space in those lower zones for requests
* which really do need memory from those zones. It means that on a decent
* sized machine, GFP_HIGHMEM and GFP_KERNEL requests basically leave the DMA
* zone untouched.
*/
struct page * fastcall
__alloc_pages(unsigned int gfp_mask, unsigned int order,
struct zonelist *zonelist)
{
const int wait = gfp_mask & __GFP_WAIT;
unsigned long min;
struct zone **zones, *z;
struct page *page;
struct reclaim_state reclaim_state;
struct task_struct *p = current;
int i;
int alloc_type;
int do_retry;
int can_try_harder;
might_sleep_if(wait);
/*
* The caller may dip into page reserves a bit more if the caller
* cannot run direct reclaim, or is the caller has realtime scheduling
* policy
*/
can_try_harder = (unlikely(rt_task(p)) && !in_interrupt()) || !wait;
zones = zonelist->zones; /* the list of zones suitable for gfp_mask */
if (unlikely(zones[0] == NULL)) {
/* Should this ever happen?? */
return NULL;
}
alloc_type = zone_idx(zones[0]);
/* Go through the zonelist once, looking for a zone with enough free */
for (i = 0; (z = zones[i]) != NULL; i++) {
min = z->pages_low + (1<<order) + z->protection[alloc_type];
if (z->free_pages < min)
continue;
page = buffered_rmqueue(z, order, gfp_mask);
if (page)
goto got_pg;
}
for (i = 0; (z = zones[i]) != NULL; i++)
wakeup_kswapd(z);
/*
* Go through the zonelist again. Let __GFP_HIGH and allocations
* coming from realtime tasks to go deeper into reserves
*/
for (i = 0; (z = zones[i]) != NULL; i++) {
min = z->pages_min;
if (gfp_mask & __GFP_HIGH)
min /= 2;
if (can_try_harder)
min -= min / 4;
min += (1<<order) + z->protection[alloc_type];
if (z->free_pages < min)
continue;
page = buffered_rmqueue(z, order, gfp_mask);
if (page)
goto got_pg;
}
/* This allocation should allow future memory freeing. */
if ((p->flags & (PF_MEMALLOC | PF_MEMDIE)) && !in_interrupt()) {
/* go through the zonelist yet again, ignoring mins */
for (i = 0; (z = zones[i]) != NULL; i++) {
page = buffered_rmqueue(z, order, gfp_mask);
if (page)
goto got_pg;
}
goto nopage;
}
/* Atomic allocations - we can't balance anything */
if (!wait)
goto nopage;
rebalance:
/* We now go into synchronous reclaim */
p->flags |= PF_MEMALLOC;
reclaim_state.reclaimed_slab = 0;
p->reclaim_state = &reclaim_state;
try_to_free_pages(zones, gfp_mask, order);
p->reclaim_state = NULL;
p->flags &= ~PF_MEMALLOC;
/* go through the zonelist yet one more time */
for (i = 0; (z = zones[i]) != NULL; i++) {
min = z->pages_min;
if (gfp_mask & __GFP_HIGH)
min /= 2;
if (can_try_harder)
min -= min / 4;
min += (1<<order) + z->protection[alloc_type];
if (z->free_pages < min)
continue;
page = buffered_rmqueue(z, order, gfp_mask);
if (page)
goto got_pg;
}
/*
* Don't let big-order allocations loop unless the caller explicitly
* requests that. Wait for some write requests to complete then retry.
*
* In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
* <= 3, but that may not be true in other implementations.
*/
do_retry = 0;
if (!(gfp_mask & __GFP_NORETRY)) {
if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
do_retry = 1;
if (gfp_mask & __GFP_NOFAIL)
do_retry = 1;
}
if (do_retry) {
blk_congestion_wait(WRITE, HZ/50);
goto rebalance;
}
nopage:
if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
printk(KERN_WARNING "%s: page allocation failure."
" order:%d, mode:0x%x\n",
p->comm, order, gfp_mask);
dump_stack();
}
return NULL;
got_pg:
zone_statistics(zonelist, z);
kernel_map_pages(page, 1 << order, 1);
return page;
}
EXPORT_SYMBOL(__alloc_pages);
/*
* Common helper functions.
*/
fastcall unsigned long __get_free_pages(unsigned int gfp_mask, unsigned int order)
{
struct page * page;
page = alloc_pages(gfp_mask, order);
if (!page)
return 0;
return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);
fastcall unsigned long get_zeroed_page(unsigned int gfp_mask)
{
struct page * page;
/*
* get_zeroed_page() returns a 32-bit address, which cannot represent
* a highmem page
*/
BUG_ON(gfp_mask & __GFP_HIGHMEM);
page = alloc_pages(gfp_mask, 0);
if (page) {
void *address = page_address(page);
clear_page(address);
return (unsigned long) address;
}
return 0;
}
EXPORT_SYMBOL(get_zeroed_page);
void __pagevec_free(struct pagevec *pvec)
{
int i = pagevec_count(pvec);
while (--i >= 0)
free_hot_cold_page(pvec->pages[i], pvec->cold);
}
fastcall void __free_pages(struct page *page, unsigned int order)
{
if (!PageReserved(page) && put_page_testzero(page)) {
if (order == 0)
free_hot_page(page);
else
__free_pages_ok(page, order);
}
}
EXPORT_SYMBOL(__free_pages);
fastcall void free_pages(unsigned long addr, unsigned int order)
{
if (addr != 0) {
BUG_ON(!virt_addr_valid((void *)addr));
__free_pages(virt_to_page((void *)addr), order);
}
}
EXPORT_SYMBOL(free_pages);
/*
* Total amount of free (allocatable) RAM:
*/
unsigned int nr_free_pages(void)
{
unsigned int sum = 0;
struct zone *zone;
for_each_zone(zone)
sum += zone->free_pages;
return sum;
}
EXPORT_SYMBOL(nr_free_pages);
#ifdef CONFIG_NUMA
unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
{
unsigned int i, sum = 0;
for (i = 0; i < MAX_NR_ZONES; i++)
sum += pgdat->node_zones[i].free_pages;
return sum;
}
#endif
static unsigned int nr_free_zone_pages(int offset)
{
pg_data_t *pgdat;
unsigned int sum = 0;
for_each_pgdat(pgdat) {
struct zonelist *zonelist = pgdat->node_zonelists + offset;
struct zone **zonep = zonelist->zones;
struct zone *zone;
for (zone = *zonep++; zone; zone = *zonep++) {
unsigned long size = zone->present_pages;
unsigned long high = zone->pages_high;
if (size > high)
sum += size - high;
}
}
return sum;
}
/*
* Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
*/
unsigned int nr_free_buffer_pages(void)
{
return nr_free_zone_pages(GFP_USER & GFP_ZONEMASK);
}
/*
* Amount of free RAM allocatable within all zones
*/
unsigned int nr_free_pagecache_pages(void)
{
return nr_free_zone_pages(GFP_HIGHUSER & GFP_ZONEMASK);
}
#ifdef CONFIG_HIGHMEM
unsigned int nr_free_highpages (void)
{
pg_data_t *pgdat;
unsigned int pages = 0;
for_each_pgdat(pgdat)
pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
return pages;
}
#endif
#ifdef CONFIG_NUMA
static void show_node(struct zone *zone)
{
printk("Node %d ", zone->zone_pgdat->node_id);
}
#else
#define show_node(zone) do { } while (0)
#endif
/*
* Accumulate the page_state information across all CPUs.
* The result is unavoidably approximate - it can change
* during and after execution of this function.
*/
DEFINE_PER_CPU(struct page_state, page_states) = {0};
EXPORT_PER_CPU_SYMBOL(page_states);
atomic_t nr_pagecache = ATOMIC_INIT(0);
EXPORT_SYMBOL(nr_pagecache);
#ifdef CONFIG_SMP
DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
#endif
void __get_page_state(struct page_state *ret, int nr)
{
int cpu = 0;
memset(ret, 0, sizeof(*ret));
while (cpu < NR_CPUS) {
unsigned long *in, *out, off;
if (!cpu_possible(cpu)) {
cpu++;
continue;
}
in = (unsigned long *)&per_cpu(page_states, cpu);
cpu++;
if (cpu < NR_CPUS && cpu_possible(cpu))
prefetch(&per_cpu(page_states, cpu));
out = (unsigned long *)ret;
for (off = 0; off < nr; off++)
*out++ += *in++;
}
}
void get_page_state(struct page_state *ret)
{
int nr;
nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
nr /= sizeof(unsigned long);
__get_page_state(ret, nr + 1);
}
void get_full_page_state(struct page_state *ret)
{
__get_page_state(ret, sizeof(*ret) / sizeof(unsigned long));
}
unsigned long __read_page_state(unsigned offset)
{
unsigned long ret = 0;
int cpu;
for (cpu = 0; cpu < NR_CPUS; cpu++) {
unsigned long in;
if (!cpu_possible(cpu))
continue;
in = (unsigned long)&per_cpu(page_states, cpu) + offset;
ret += *((unsigned long *)in);
}
return ret;
}
void __get_zone_counts(unsigned long *active, unsigned long *inactive,
unsigned long *free, struct pglist_data *pgdat)
{
struct zone *zones = pgdat->node_zones;
int i;
*active = 0;
*inactive = 0;
*free = 0;
for (i = 0; i < MAX_NR_ZONES; i++) {
*active += zones[i].nr_active;
*inactive += zones[i].nr_inactive;
*free += zones[i].free_pages;
}
}
void get_zone_counts(unsigned long *active,
unsigned long *inactive, unsigned long *free)
{
struct pglist_data *pgdat;
*active = 0;
*inactive = 0;
*free = 0;
for_each_pgdat(pgdat) {
unsigned long l, m, n;
__get_zone_counts(&l, &m, &n, pgdat);
*active += l;
*inactive += m;
*free += n;
}
}
void si_meminfo(struct sysinfo *val)
{
val->totalram = totalram_pages;
val->sharedram = 0;
val->freeram = nr_free_pages();
val->bufferram = nr_blockdev_pages();
#ifdef CONFIG_HIGHMEM
val->totalhigh = totalhigh_pages;
val->freehigh = nr_free_highpages();
#else
val->totalhigh = 0;
val->freehigh = 0;
#endif
val->mem_unit = PAGE_SIZE;
}
EXPORT_SYMBOL(si_meminfo);
#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
pg_data_t *pgdat = NODE_DATA(nid);
val->totalram = pgdat->node_present_pages;
val->freeram = nr_free_pages_pgdat(pgdat);
val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
val->mem_unit = PAGE_SIZE;
}
#endif
#define K(x) ((x) << (PAGE_SHIFT-10))
/*
* Show free area list (used inside shift_scroll-lock stuff)
* We also calculate the percentage fragmentation. We do this by counting the
* memory on each free list with the exception of the first item on the list.
*/
void show_free_areas(void)
{
struct page_state ps;
int cpu, temperature;
unsigned long active;
unsigned long inactive;
unsigned long free;
struct zone *zone;
for_each_zone(zone) {
show_node(zone);
printk("%s per-cpu:", zone->name);
if (!zone->present_pages) {
printk(" empty\n");
continue;
} else
printk("\n");
for (cpu = 0; cpu < NR_CPUS; ++cpu) {
struct per_cpu_pageset *pageset;
if (!cpu_possible(cpu))
continue;
pageset = zone->pageset + cpu;
for (temperature = 0; temperature < 2; temperature++)
printk("cpu %d %s: low %d, high %d, batch %d\n",
cpu,
temperature ? "cold" : "hot",
pageset->pcp[temperature].low,
pageset->pcp[temperature].high,
pageset->pcp[temperature].batch);
}
}
get_page_state(&ps);
get_zone_counts(&active, &inactive, &free);
printk("\nFree pages: %11ukB (%ukB HighMem)\n",
K(nr_free_pages()),
K(nr_free_highpages()));
printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
"unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
active,
inactive,
ps.nr_dirty,
ps.nr_writeback,
ps.nr_unstable,
nr_free_pages(),
ps.nr_slab,
ps.nr_mapped,
ps.nr_page_table_pages);
for_each_zone(zone) {
int i;
show_node(zone);
printk("%s"
" free:%lukB"
" min:%lukB"
" low:%lukB"
" high:%lukB"
" active:%lukB"
" inactive:%lukB"
" present:%lukB"
" pages_scanned:%lu"
" all_unreclaimable? %s"
"\n",
zone->name,
K(zone->free_pages),
K(zone->pages_min),
K(zone->pages_low),
K(zone->pages_high),
K(zone->nr_active),
K(zone->nr_inactive),
K(zone->present_pages),
zone->pages_scanned,
(zone->all_unreclaimable ? "yes" : "no")
);
printk("protections[]:");
for (i = 0; i < MAX_NR_ZONES; i++)
printk(" %lu", zone->protection[i]);
printk("\n");
}
for_each_zone(zone) {
struct list_head *elem;
unsigned long nr, flags, order, total = 0;
show_node(zone);
printk("%s: ", zone->name);
if (!zone->present_pages) {
printk("empty\n");
continue;
}
spin_lock_irqsave(&zone->lock, flags);
for (order = 0; order < MAX_ORDER; order++) {
nr = 0;
list_for_each(elem, &zone->free_area[order].free_list)
++nr;
total += nr << order;
printk("%lu*%lukB ", nr, K(1UL) << order);
}
spin_unlock_irqrestore(&zone->lock, flags);
printk("= %lukB\n", K(total));
}
show_swap_cache_info();
}
/*
* Builds allocation fallback zone lists.
*/
static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k)
{
switch (k) {
struct zone *zone;
default:
BUG();
case ZONE_HIGHMEM:
zone = pgdat->node_zones + ZONE_HIGHMEM;
if (zone->present_pages) {
#ifndef CONFIG_HIGHMEM
BUG();
#endif
zonelist->zones[j++] = zone;
}
case ZONE_NORMAL:
zone = pgdat->node_zones + ZONE_NORMAL;
if (zone->present_pages)
zonelist->zones[j++] = zone;
case ZONE_DMA:
zone = pgdat->node_zones + ZONE_DMA;
if (zone->present_pages)
zonelist->zones[j++] = zone;
}
return j;
}
#ifdef CONFIG_NUMA
#define MAX_NODE_LOAD (numnodes)
static int __initdata node_load[MAX_NUMNODES];
/**
* find_next_best_node - find the next node that should appear in a given
* node's fallback list
* @node: node whose fallback list we're appending
* @used_node_mask: pointer to the bitmap of already used nodes
*
* We use a number of factors to determine which is the next node that should
* appear on a given node's fallback list. The node should not have appeared
* already in @node's fallback list, and it should be the next closest node
* according to the distance array (which contains arbitrary distance values
* from each node to each node in the system), and should also prefer nodes
* with no CPUs, since presumably they'll have very little allocation pressure
* on them otherwise.
* It returns -1 if no node is found.
*/
static int __init find_next_best_node(int node, void *used_node_mask)
{
int i, n, val;
int min_val = INT_MAX;
int best_node = -1;
for (i = 0; i < numnodes; i++) {
cpumask_t tmp;
/* Start from local node */
n = (node+i)%numnodes;
/* Don't want a node to appear more than once */
if (test_bit(n, used_node_mask))
continue;
/* Use the local node if we haven't already */
if (!test_bit(node, used_node_mask)) {
best_node = node;
break;
}
/* Use the distance array to find the distance */
val = node_distance(node, n);
/* Give preference to headless and unused nodes */
tmp = node_to_cpumask(n);
if (!cpus_empty(tmp))
val += PENALTY_FOR_NODE_WITH_CPUS;
/* Slight preference for less loaded node */
val *= (MAX_NODE_LOAD*MAX_NUMNODES);
val += node_load[n];
if (val < min_val) {
min_val = val;
best_node = n;
}
}
if (best_node >= 0)
set_bit(best_node, used_node_mask);
return best_node;
}
static void __init build_zonelists(pg_data_t *pgdat)
{
int i, j, k, node, local_node;
int prev_node, load;
struct zonelist *zonelist;
DECLARE_BITMAP(used_mask, MAX_NUMNODES);
/* initialize zonelists */
for (i = 0; i < GFP_ZONETYPES; i++) {
zonelist = pgdat->node_zonelists + i;
memset(zonelist, 0, sizeof(*zonelist));
zonelist->zones[0] = NULL;
}
/* NUMA-aware ordering of nodes */
local_node = pgdat->node_id;
load = numnodes;
prev_node = local_node;
bitmap_zero(used_mask, MAX_NUMNODES);
while ((node = find_next_best_node(local_node, used_mask)) >= 0) {
/*
* We don't want to pressure a particular node.
* So adding penalty to the first node in same
* distance group to make it round-robin.
*/
if (node_distance(local_node, node) !=
node_distance(local_node, prev_node))
node_load[node] += load;
prev_node = node;
load--;
for (i = 0; i < GFP_ZONETYPES; i++) {
zonelist = pgdat->node_zonelists + i;
for (j = 0; zonelist->zones[j] != NULL; j++);
k = ZONE_NORMAL;
if (i & __GFP_HIGHMEM)
k = ZONE_HIGHMEM;
if (i & __GFP_DMA)
k = ZONE_DMA;
j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
zonelist->zones[j] = NULL;
}
}
}
#else /* CONFIG_NUMA */
static void __init build_zonelists(pg_data_t *pgdat)
{
int i, j, k, node, local_node;
local_node = pgdat->node_id;
for (i = 0; i < GFP_ZONETYPES; i++) {
struct zonelist *zonelist;
zonelist = pgdat->node_zonelists + i;
memset(zonelist, 0, sizeof(*zonelist));
j = 0;
k = ZONE_NORMAL;
if (i & __GFP_HIGHMEM)
k = ZONE_HIGHMEM;
if (i & __GFP_DMA)
k = ZONE_DMA;
j = build_zonelists_node(pgdat, zonelist, j, k);
/*
* Now we build the zonelist so that it contains the zones
* of all the other nodes.
* We don't want to pressure a particular node, so when
* building the zones for node N, we make sure that the
* zones coming right after the local ones are those from
* node N+1 (modulo N)
*/
for (node = local_node + 1; node < numnodes; node++)
j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
for (node = 0; node < local_node; node++)
j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
zonelist->zones[j] = NULL;
}
}
#endif /* CONFIG_NUMA */
void __init build_all_zonelists(void)
{
int i;
for(i = 0 ; i < numnodes ; i++)
build_zonelists(NODE_DATA(i));
printk("Built %i zonelists\n", numnodes);
}
/*
* Helper functions to size the waitqueue hash table.
* Essentially these want to choose hash table sizes sufficiently
* large so that collisions trying to wait on pages are rare.
* But in fact, the number of active page waitqueues on typical
* systems is ridiculously low, less than 200. So this is even
* conservative, even though it seems large.
*
* The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
* waitqueues, i.e. the size of the waitq table given the number of pages.
*/
#define PAGES_PER_WAITQUEUE 256
static inline unsigned long wait_table_size(unsigned long pages)
{
unsigned long size = 1;
pages /= PAGES_PER_WAITQUEUE;
while (size < pages)
size <<= 1;
/*
* Once we have dozens or even hundreds of threads sleeping
* on IO we've got bigger problems than wait queue collision.
* Limit the size of the wait table to a reasonable size.
*/
size = min(size, 4096UL);
return max(size, 4UL);
}
/*
* This is an integer logarithm so that shifts can be used later
* to extract the more random high bits from the multiplicative
* hash function before the remainder is taken.
*/
static inline unsigned long wait_table_bits(unsigned long size)
{
return ffz(~size);
}
#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
unsigned long *zones_size, unsigned long *zholes_size)
{
unsigned long realtotalpages, totalpages = 0;
int i;
for (i = 0; i < MAX_NR_ZONES; i++)
totalpages += zones_size[i];
pgdat->node_spanned_pages = totalpages;
realtotalpages = totalpages;
if (zholes_size)
for (i = 0; i < MAX_NR_ZONES; i++)
realtotalpages -= zholes_size[i];
pgdat->node_present_pages = realtotalpages;
printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
}
/*
* Initially all pages are reserved - free ones are freed
* up by free_all_bootmem() once the early boot process is
* done. Non-atomic initialization, single-pass.
*/
void __init memmap_init_zone(unsigned long size, int nid, unsigned long zone,
unsigned long start_pfn)
{
struct page *start = pfn_to_page(start_pfn);
struct page *page;
for (page = start; page < (start + size); page++) {
set_page_zone(page, NODEZONE(nid, zone));
set_page_count(page, 0);
reset_page_mapcount(page);
SetPageReserved(page);
INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
/* The shift won't overflow because ZONE_NORMAL is below 4G. */
if (!is_highmem_idx(zone))
set_page_address(page, __va(start_pfn << PAGE_SHIFT));
#endif
start_pfn++;
}
}
/*
* Page buddy system uses "index >> (i+1)", where "index" is
* at most "size-1".
*
* The extra "+3" is to round down to byte size (8 bits per byte
* assumption). Thus we get "(size-1) >> (i+4)" as the last byte
* we can access.
*
* The "+1" is because we want to round the byte allocation up
* rather than down. So we should have had a "+7" before we shifted
* down by three. Also, we have to add one as we actually _use_ the
* last bit (it's [0,n] inclusive, not [0,n[).
*
* So we actually had +7+1 before we shift down by 3. But
* (n+8) >> 3 == (n >> 3) + 1 (modulo overflows, which we do not have).
*
* Finally, we LONG_ALIGN because all bitmap operations are on longs.
*/
unsigned long pages_to_bitmap_size(unsigned long order, unsigned long nr_pages)
{
unsigned long bitmap_size;
bitmap_size = (nr_pages-1) >> (order+4);
bitmap_size = LONG_ALIGN(bitmap_size+1);
return bitmap_size;
}
void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone, unsigned long size)
{
int order;
for (order = 0; ; order++) {
unsigned long bitmap_size;
INIT_LIST_HEAD(&zone->free_area[order].free_list);
if (order == MAX_ORDER-1) {
zone->free_area[order].map = NULL;
break;
}
bitmap_size = pages_to_bitmap_size(order, size);
zone->free_area[order].map =
(unsigned long *) alloc_bootmem_node(pgdat, bitmap_size);
}
}
#ifndef __HAVE_ARCH_MEMMAP_INIT
#define memmap_init(size, nid, zone, start_pfn) \
memmap_init_zone((size), (nid), (zone), (start_pfn))
#endif
/*
* Set up the zone data structures:
* - mark all pages reserved
* - mark all memory queues empty
* - clear the memory bitmaps
*/
static void __init free_area_init_core(struct pglist_data *pgdat,
unsigned long *zones_size, unsigned long *zholes_size)
{
unsigned long i, j;
const unsigned long zone_required_alignment = 1UL << (MAX_ORDER-1);
int cpu, nid = pgdat->node_id;
unsigned long zone_start_pfn = pgdat->node_start_pfn;
pgdat->nr_zones = 0;
init_waitqueue_head(&pgdat->kswapd_wait);
for (j = 0; j < MAX_NR_ZONES; j++) {
struct zone *zone = pgdat->node_zones + j;
unsigned long size, realsize;
unsigned long batch;
zone_table[NODEZONE(nid, j)] = zone;
realsize = size = zones_size[j];
if (zholes_size)
realsize -= zholes_size[j];
if (j == ZONE_DMA || j == ZONE_NORMAL)
nr_kernel_pages += realsize;
nr_all_pages += realsize;
zone->spanned_pages = size;
zone->present_pages = realsize;
zone->name = zone_names[j];
spin_lock_init(&zone->lock);
spin_lock_init(&zone->lru_lock);
zone->zone_pgdat = pgdat;
zone->free_pages = 0;
zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
/*
* The per-cpu-pages pools are set to around 1000th of the
* size of the zone. But no more than 1/4 of a meg - there's
* no point in going beyond the size of L2 cache.
*
* OK, so we don't know how big the cache is. So guess.
*/
batch = zone->present_pages / 1024;
if (batch * PAGE_SIZE > 256 * 1024)
batch = (256 * 1024) / PAGE_SIZE;
batch /= 4; /* We effectively *= 4 below */
if (batch < 1)
batch = 1;
for (cpu = 0; cpu < NR_CPUS; cpu++) {
struct per_cpu_pages *pcp;
pcp = &zone->pageset[cpu].pcp[0]; /* hot */
pcp->count = 0;
pcp->low = 2 * batch;
pcp->high = 6 * batch;
pcp->batch = 1 * batch;
INIT_LIST_HEAD(&pcp->list);
pcp = &zone->pageset[cpu].pcp[1]; /* cold */
pcp->count = 0;
pcp->low = 0;
pcp->high = 2 * batch;
pcp->batch = 1 * batch;
INIT_LIST_HEAD(&pcp->list);
}
printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
zone_names[j], realsize, batch);
INIT_LIST_HEAD(&zone->active_list);
INIT_LIST_HEAD(&zone->inactive_list);
zone->nr_scan_active = 0;
zone->nr_scan_inactive = 0;
zone->nr_active = 0;
zone->nr_inactive = 0;
if (!size)
continue;
/*
* The per-page waitqueue mechanism uses hashed waitqueues
* per zone.
*/
zone->wait_table_size = wait_table_size(size);
zone->wait_table_bits =
wait_table_bits(zone->wait_table_size);
zone->wait_table = (wait_queue_head_t *)
alloc_bootmem_node(pgdat, zone->wait_table_size
* sizeof(wait_queue_head_t));
for(i = 0; i < zone->wait_table_size; ++i)
init_waitqueue_head(zone->wait_table + i);
pgdat->nr_zones = j+1;
zone->zone_mem_map = pfn_to_page(zone_start_pfn);
zone->zone_start_pfn = zone_start_pfn;
if ((zone_start_pfn) & (zone_required_alignment-1))
printk("BUG: wrong zone alignment, it will crash\n");
memmap_init(size, nid, j, zone_start_pfn);
zone_start_pfn += size;
zone_init_free_lists(pgdat, zone, zone->spanned_pages);
}
}
void __init node_alloc_mem_map(struct pglist_data *pgdat)
{
unsigned long size;
size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
pgdat->node_mem_map = alloc_bootmem_node(pgdat, size);
#ifndef CONFIG_DISCONTIGMEM
mem_map = contig_page_data.node_mem_map;
#endif
}
void __init free_area_init_node(int nid, struct pglist_data *pgdat,
unsigned long *zones_size, unsigned long node_start_pfn,
unsigned long *zholes_size)
{
pgdat->node_id = nid;
pgdat->node_start_pfn = node_start_pfn;
calculate_zone_totalpages(pgdat, zones_size, zholes_size);
if (!pfn_to_page(node_start_pfn))
node_alloc_mem_map(pgdat);
free_area_init_core(pgdat, zones_size, zholes_size);
}
#ifndef CONFIG_DISCONTIGMEM
static bootmem_data_t contig_bootmem_data;
struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
EXPORT_SYMBOL(contig_page_data);
void __init free_area_init(unsigned long *zones_size)
{
free_area_init_node(0, &contig_page_data, zones_size,
__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
}
#endif
#ifdef CONFIG_PROC_FS
#include <linux/seq_file.h>
static void *frag_start(struct seq_file *m, loff_t *pos)
{
pg_data_t *pgdat;
loff_t node = *pos;
for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
--node;
return pgdat;
}
static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
{
pg_data_t *pgdat = (pg_data_t *)arg;
(*pos)++;
return pgdat->pgdat_next;
}
static void frag_stop(struct seq_file *m, void *arg)
{
}
/*
* This walks the freelist for each zone. Whilst this is slow, I'd rather
* be slow here than slow down the fast path by keeping stats - mjbligh
*/
static int frag_show(struct seq_file *m, void *arg)
{
pg_data_t *pgdat = (pg_data_t *)arg;
struct zone *zone;
struct zone *node_zones = pgdat->node_zones;
unsigned long flags;
int order;
for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
if (!zone->present_pages)
continue;
spin_lock_irqsave(&zone->lock, flags);
seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
for (order = 0; order < MAX_ORDER; ++order) {
unsigned long nr_bufs = 0;
struct list_head *elem;
list_for_each(elem, &(zone->free_area[order].free_list))
++nr_bufs;
seq_printf(m, "%6lu ", nr_bufs);
}
spin_unlock_irqrestore(&zone->lock, flags);
seq_putc(m, '\n');
}
return 0;
}
struct seq_operations fragmentation_op = {
.start = frag_start,
.next = frag_next,
.stop = frag_stop,
.show = frag_show,
};
static char *vmstat_text[] = {
"nr_dirty",
"nr_writeback",
"nr_unstable",
"nr_page_table_pages",
"nr_mapped",
"nr_slab",
"pgpgin",
"pgpgout",
"pswpin",
"pswpout",
"pgalloc_high",
"pgalloc_normal",
"pgalloc_dma",
"pgfree",
"pgactivate",
"pgdeactivate",
"pgfault",
"pgmajfault",
"pgrefill_high",
"pgrefill_normal",
"pgrefill_dma",
"pgsteal_high",
"pgsteal_normal",
"pgsteal_dma",
"pgscan_kswapd_high",
"pgscan_kswapd_normal",
"pgscan_kswapd_dma",
"pgscan_direct_high",
"pgscan_direct_normal",
"pgscan_direct_dma",
"pginodesteal",
"slabs_scanned",
"kswapd_steal",
"kswapd_inodesteal",
"pageoutrun",
"allocstall",
"pgrotated",
};
static void *vmstat_start(struct seq_file *m, loff_t *pos)
{
struct page_state *ps;
if (*pos >= ARRAY_SIZE(vmstat_text))
return NULL;
ps = kmalloc(sizeof(*ps), GFP_KERNEL);
m->private = ps;
if (!ps)
return ERR_PTR(-ENOMEM);
get_full_page_state(ps);
ps->pgpgin /= 2; /* sectors -> kbytes */
ps->pgpgout /= 2;
return (unsigned long *)ps + *pos;
}
static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
{
(*pos)++;
if (*pos >= ARRAY_SIZE(vmstat_text))
return NULL;
return (unsigned long *)m->private + *pos;
}
static int vmstat_show(struct seq_file *m, void *arg)
{
unsigned long *l = arg;
unsigned long off = l - (unsigned long *)m->private;
seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
return 0;
}
static void vmstat_stop(struct seq_file *m, void *arg)
{
kfree(m->private);
m->private = NULL;
}
struct seq_operations vmstat_op = {
.start = vmstat_start,
.next = vmstat_next,
.stop = vmstat_stop,
.show = vmstat_show,
};
#endif /* CONFIG_PROC_FS */
#ifdef CONFIG_HOTPLUG_CPU
static int page_alloc_cpu_notify(struct notifier_block *self,
unsigned long action, void *hcpu)
{
int cpu = (unsigned long)hcpu;
long *count;
if (action == CPU_DEAD) {
/* Drain local pagecache count. */
count = &per_cpu(nr_pagecache_local, cpu);
atomic_add(*count, &nr_pagecache);
*count = 0;
local_irq_disable();
__drain_pages(cpu);
local_irq_enable();
}
return NOTIFY_OK;
}
#endif /* CONFIG_HOTPLUG_CPU */
void __init page_alloc_init(void)
{
hotcpu_notifier(page_alloc_cpu_notify, 0);
}
static unsigned long higherzone_val(struct zone *z, int max_zone,
int alloc_type)
{
int z_idx = zone_idx(z);
struct zone *higherzone;
unsigned long pages;
/* there is no higher zone to get a contribution from */
if (z_idx == MAX_NR_ZONES-1)
return 0;
higherzone = &z->zone_pgdat->node_zones[z_idx+1];
/* We always start with the higher zone's protection value */
pages = higherzone->protection[alloc_type];
/*
* We get a lower-zone-protection contribution only if there are
* pages in the higher zone and if we're not the highest zone
* in the current zonelist. e.g., never happens for GFP_DMA. Happens
* only for ZONE_DMA in a GFP_KERNEL allocation and happens for ZONE_DMA
* and ZONE_NORMAL for a GFP_HIGHMEM allocation.
*/
if (higherzone->present_pages && z_idx < alloc_type)
pages += higherzone->pages_low * sysctl_lower_zone_protection;
return pages;
}
/*
* setup_per_zone_protection - called whenver min_free_kbytes or
* sysctl_lower_zone_protection changes. Ensures that each zone
* has a correct pages_protected value, so an adequate number of
* pages are left in the zone after a successful __alloc_pages().
*
* This algorithm is way confusing. I tries to keep the same behavior
* as we had with the incremental min iterative algorithm.
*/
static void setup_per_zone_protection(void)
{
struct pglist_data *pgdat;
struct zone *zones, *zone;
int max_zone;
int i, j;
for_each_pgdat(pgdat) {
zones = pgdat->node_zones;
for (i = 0, max_zone = 0; i < MAX_NR_ZONES; i++)
if (zones[i].present_pages)
max_zone = i;
/*
* For each of the different allocation types:
* GFP_DMA -> GFP_KERNEL -> GFP_HIGHMEM
*/
for (i = 0; i < GFP_ZONETYPES; i++) {
/*
* For each of the zones:
* ZONE_HIGHMEM -> ZONE_NORMAL -> ZONE_DMA
*/
for (j = MAX_NR_ZONES-1; j >= 0; j--) {
zone = &zones[j];
/*
* We never protect zones that don't have memory
* in them (j>max_zone) or zones that aren't in
* the zonelists for a certain type of
* allocation (j>=i). We have to assign these
* to zero because the lower zones take
* contributions from the higher zones.
*/
if (j > max_zone || j >= i) {
zone->protection[i] = 0;
continue;
}
/*
* The contribution of the next higher zone
*/
zone->protection[i] = higherzone_val(zone,
max_zone, i);
}
}
}
}
/*
* setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
* that the pages_{min,low,high} values for each zone are set correctly
* with respect to min_free_kbytes.
*/
static void setup_per_zone_pages_min(void)
{
unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
unsigned long lowmem_pages = 0;
struct zone *zone;
unsigned long flags;
/* Calculate total number of !ZONE_HIGHMEM pages */
for_each_zone(zone) {
if (!is_highmem(zone))
lowmem_pages += zone->present_pages;
}
for_each_zone(zone) {
spin_lock_irqsave(&zone->lru_lock, flags);
if (is_highmem(zone)) {
/*
* Often, highmem doesn't need to reserve any pages.
* But the pages_min/low/high values are also used for
* batching up page reclaim activity so we need a
* decent value here.
*/
int min_pages;
min_pages = zone->present_pages / 1024;
if (min_pages < SWAP_CLUSTER_MAX)
min_pages = SWAP_CLUSTER_MAX;
if (min_pages > 128)
min_pages = 128;
zone->pages_min = min_pages;
} else {
/* if it's a lowmem zone, reserve a number of pages
* proportionate to the zone's size.
*/
zone->pages_min = (pages_min * zone->present_pages) /
lowmem_pages;
}
/*
* When interpreting these watermarks, just keep in mind that:
* zone->pages_min == (zone->pages_min * 4) / 4;
*/
zone->pages_low = (zone->pages_min * 5) / 4;
zone->pages_high = (zone->pages_min * 6) / 4;
spin_unlock_irqrestore(&zone->lru_lock, flags);
}
}
/*
* Initialise min_free_kbytes.
*
* For small machines we want it small (128k min). For large machines
* we want it large (64MB max). But it is not linear, because network
* bandwidth does not increase linearly with machine size. We use
*
* min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
* min_free_kbytes = sqrt(lowmem_kbytes * 16)
*
* which yields
*
* 16MB: 512k
* 32MB: 724k
* 64MB: 1024k
* 128MB: 1448k
* 256MB: 2048k
* 512MB: 2896k
* 1024MB: 4096k
* 2048MB: 5792k
* 4096MB: 8192k
* 8192MB: 11584k
* 16384MB: 16384k
*/
static int __init init_per_zone_pages_min(void)
{
unsigned long lowmem_kbytes;
lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
if (min_free_kbytes < 128)
min_free_kbytes = 128;
if (min_free_kbytes > 65536)
min_free_kbytes = 65536;
setup_per_zone_pages_min();
setup_per_zone_protection();
return 0;
}
module_init(init_per_zone_pages_min)
/*
* min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
* that we can call two helper functions whenever min_free_kbytes
* changes.
*/
int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
{
proc_dointvec(table, write, file, buffer, length, ppos);
setup_per_zone_pages_min();
setup_per_zone_protection();
return 0;
}
/*
* lower_zone_protection_sysctl_handler - just a wrapper around
* proc_dointvec() so that we can call setup_per_zone_protection()
* whenever sysctl_lower_zone_protection changes.
*/
int lower_zone_protection_sysctl_handler(ctl_table *table, int write,
struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
{
proc_dointvec_minmax(table, write, file, buffer, length, ppos);
setup_per_zone_protection();
return 0;
}
/*
* allocate a large system hash table from bootmem
* - it is assumed that the hash table must contain an exact power-of-2
* quantity of entries
*/
void *__init alloc_large_system_hash(const char *tablename,
unsigned long bucketsize,
unsigned long numentries,
int scale,
int consider_highmem,
unsigned int *_hash_shift,
unsigned int *_hash_mask)
{
unsigned long long max;
unsigned long log2qty, size;
void *table;
/* allow the kernel cmdline to have a say */
if (!numentries) {
/* round applicable memory size up to nearest megabyte */
numentries = consider_highmem ? nr_all_pages : nr_kernel_pages;
numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
numentries >>= 20 - PAGE_SHIFT;
numentries <<= 20 - PAGE_SHIFT;
/* limit to 1 bucket per 2^scale bytes of low memory */
if (scale > PAGE_SHIFT)
numentries >>= (scale - PAGE_SHIFT);
else
numentries <<= (PAGE_SHIFT - scale);
}
/* rounded up to nearest power of 2 in size */
numentries = 1UL << (long_log2(numentries) + 1);
/* limit allocation size to 1/16 total memory */
max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
do_div(max, bucketsize);
if (numentries > max)
numentries = max;
log2qty = long_log2(numentries);
do {
size = bucketsize << log2qty;
table = alloc_bootmem(size);
} while (!table && size > PAGE_SIZE && --log2qty);
if (!table)
panic("Failed to allocate %s hash table\n", tablename);
printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
tablename,
(1U << log2qty),
long_log2(size) - PAGE_SHIFT,
size);
if (_hash_shift)
*_hash_shift = log2qty;
if (_hash_mask)
*_hash_mask = (1 << log2qty) - 1;
return table;
}