This repository has been archived on 2023-08-20. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files

1069 lines
27 KiB
C

/*
* Implementation of the kernel access vector cache (AVC).
*
* Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
* James Morris <jmorris@redhat.com>
*
* Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2,
* as published by the Free Software Foundation.
*/
#include <linux/types.h>
#include <linux/stddef.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/fs.h>
#include <linux/dcache.h>
#include <linux/init.h>
#include <linux/skbuff.h>
#include <net/sock.h>
#include <linux/un.h>
#include <net/af_unix.h>
#include <linux/ip.h>
#include <linux/audit.h>
#include <linux/ipv6.h>
#include <net/ipv6.h>
#include "avc.h"
#include "avc_ss.h"
#ifdef CONFIG_AUDIT
#include "class_to_string.h"
#endif
#include "common_perm_to_string.h"
#include "av_inherit.h"
#include "av_perm_to_string.h"
#include "objsec.h"
#define AVC_CACHE_SLOTS 512
#define AVC_CACHE_MAXNODES 410
struct avc_entry {
u32 ssid;
u32 tsid;
u16 tclass;
struct av_decision avd;
int used; /* used recently */
};
struct avc_node {
struct avc_entry ae;
struct avc_node *next;
};
struct avc_cache {
struct avc_node *slots[AVC_CACHE_SLOTS];
u32 lru_hint; /* LRU hint for reclaim scan */
u32 active_nodes;
u32 latest_notif; /* latest revocation notification */
};
struct avc_callback_node {
int (*callback) (u32 event, u32 ssid, u32 tsid,
u16 tclass, u32 perms,
u32 *out_retained);
u32 events;
u32 ssid;
u32 tsid;
u16 tclass;
u32 perms;
struct avc_callback_node *next;
};
static spinlock_t avc_lock = SPIN_LOCK_UNLOCKED;
static struct avc_node *avc_node_freelist;
static struct avc_cache avc_cache;
static unsigned avc_cache_stats[AVC_NSTATS];
static struct avc_callback_node *avc_callbacks;
static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
{
return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
}
#ifdef AVC_CACHE_STATS
static inline void avc_cache_stats_incr(int type)
{
avc_cache_stats[type]++;
}
static inline void avc_cache_stats_add(int type, unsigned val)
{
avc_cache_stats[type] += val;
}
#else
static inline void avc_cache_stats_incr(int type)
{ }
static inline void avc_cache_stats_add(int type, unsigned val)
{ }
#endif
/**
* avc_dump_av - Display an access vector in human-readable form.
* @tclass: target security class
* @av: access vector
*/
void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
{
char **common_pts = NULL;
u32 common_base = 0;
int i, i2, perm;
if (av == 0) {
audit_log_format(ab, " null");
return;
}
for (i = 0; i < ARRAY_SIZE(av_inherit); i++) {
if (av_inherit[i].tclass == tclass) {
common_pts = av_inherit[i].common_pts;
common_base = av_inherit[i].common_base;
break;
}
}
audit_log_format(ab, " {");
i = 0;
perm = 1;
while (perm < common_base) {
if (perm & av)
audit_log_format(ab, " %s", common_pts[i]);
i++;
perm <<= 1;
}
while (i < sizeof(av) * 8) {
if (perm & av) {
for (i2 = 0; i2 < ARRAY_SIZE(av_perm_to_string); i2++) {
if ((av_perm_to_string[i2].tclass == tclass) &&
(av_perm_to_string[i2].value == perm))
break;
}
if (i2 < ARRAY_SIZE(av_perm_to_string))
audit_log_format(ab, " %s",
av_perm_to_string[i2].name);
}
i++;
perm <<= 1;
}
audit_log_format(ab, " }");
}
/**
* avc_dump_query - Display a SID pair and a class in human-readable form.
* @ssid: source security identifier
* @tsid: target security identifier
* @tclass: target security class
*/
void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
{
int rc;
char *scontext;
u32 scontext_len;
rc = security_sid_to_context(ssid, &scontext, &scontext_len);
if (rc)
audit_log_format(ab, "ssid=%d", ssid);
else {
audit_log_format(ab, "scontext=%s", scontext);
kfree(scontext);
}
rc = security_sid_to_context(tsid, &scontext, &scontext_len);
if (rc)
audit_log_format(ab, " tsid=%d", tsid);
else {
audit_log_format(ab, " tcontext=%s", scontext);
kfree(scontext);
}
audit_log_format(ab, " tclass=%s", class_to_string[tclass]);
}
/**
* avc_init - Initialize the AVC.
*
* Initialize the access vector cache.
*/
void __init avc_init(void)
{
struct avc_node *new;
int i;
for (i = 0; i < AVC_CACHE_MAXNODES; i++) {
new = kmalloc(sizeof(*new), GFP_ATOMIC);
if (!new) {
printk(KERN_WARNING "avc: only able to allocate "
"%d entries\n", i);
break;
}
memset(new, 0, sizeof(*new));
new->next = avc_node_freelist;
avc_node_freelist = new;
}
audit_log(current->audit_context, "AVC INITIALIZED\n");
}
#if 0
static void avc_hash_eval(char *tag)
{
int i, chain_len, max_chain_len, slots_used;
struct avc_node *node;
unsigned long flags;
spin_lock_irqsave(&avc_lock,flags);
slots_used = 0;
max_chain_len = 0;
for (i = 0; i < AVC_CACHE_SLOTS; i++) {
node = avc_cache.slots[i];
if (node) {
slots_used++;
chain_len = 0;
while (node) {
chain_len++;
node = node->next;
}
if (chain_len > max_chain_len)
max_chain_len = chain_len;
}
}
spin_unlock_irqrestore(&avc_lock,flags);
printk(KERN_INFO "\n");
printk(KERN_INFO "%s avc: %d entries and %d/%d buckets used, longest "
"chain length %d\n", tag, avc_cache.active_nodes, slots_used,
AVC_CACHE_SLOTS, max_chain_len);
}
#else
static inline void avc_hash_eval(char *tag)
{ }
#endif
static inline struct avc_node *avc_reclaim_node(void)
{
struct avc_node *prev, *cur;
int hvalue, try;
hvalue = avc_cache.lru_hint;
for (try = 0; try < 2; try++) {
do {
prev = NULL;
cur = avc_cache.slots[hvalue];
while (cur) {
if (!cur->ae.used)
goto found;
cur->ae.used = 0;
prev = cur;
cur = cur->next;
}
hvalue = (hvalue + 1) & (AVC_CACHE_SLOTS - 1);
} while (hvalue != avc_cache.lru_hint);
}
panic("avc_reclaim_node");
found:
avc_cache.lru_hint = hvalue;
if (prev == NULL)
avc_cache.slots[hvalue] = cur->next;
else
prev->next = cur->next;
return cur;
}
static inline struct avc_node *avc_claim_node(u32 ssid,
u32 tsid, u16 tclass)
{
struct avc_node *new;
int hvalue;
hvalue = avc_hash(ssid, tsid, tclass);
if (avc_node_freelist) {
new = avc_node_freelist;
avc_node_freelist = avc_node_freelist->next;
avc_cache.active_nodes++;
} else {
new = avc_reclaim_node();
if (!new)
goto out;
}
new->ae.used = 1;
new->ae.ssid = ssid;
new->ae.tsid = tsid;
new->ae.tclass = tclass;
new->next = avc_cache.slots[hvalue];
avc_cache.slots[hvalue] = new;
out:
return new;
}
static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid,
u16 tclass, int *probes)
{
struct avc_node *cur;
int hvalue;
int tprobes = 1;
hvalue = avc_hash(ssid, tsid, tclass);
cur = avc_cache.slots[hvalue];
while (cur != NULL &&
(ssid != cur->ae.ssid ||
tclass != cur->ae.tclass ||
tsid != cur->ae.tsid)) {
tprobes++;
cur = cur->next;
}
if (cur == NULL) {
/* cache miss */
goto out;
}
/* cache hit */
if (probes)
*probes = tprobes;
cur->ae.used = 1;
out:
return cur;
}
/**
* avc_lookup - Look up an AVC entry.
* @ssid: source security identifier
* @tsid: target security identifier
* @tclass: target security class
* @requested: requested permissions, interpreted based on @tclass
* @aeref: AVC entry reference
*
* Look up an AVC entry that is valid for the
* @requested permissions between the SID pair
* (@ssid, @tsid), interpreting the permissions
* based on @tclass. If a valid AVC entry exists,
* then this function updates @aeref to refer to the
* entry and returns %0. Otherwise, this function
* returns -%ENOENT.
*/
int avc_lookup(u32 ssid, u32 tsid, u16 tclass,
u32 requested, struct avc_entry_ref *aeref)
{
struct avc_node *node;
int probes, rc = 0;
avc_cache_stats_incr(AVC_CAV_LOOKUPS);
node = avc_search_node(ssid, tsid, tclass,&probes);
if (node && ((node->ae.avd.decided & requested) == requested)) {
avc_cache_stats_incr(AVC_CAV_HITS);
avc_cache_stats_add(AVC_CAV_PROBES,probes);
aeref->ae = &node->ae;
goto out;
}
avc_cache_stats_incr(AVC_CAV_MISSES);
rc = -ENOENT;
out:
return rc;
}
/**
* avc_insert - Insert an AVC entry.
* @ssid: source security identifier
* @tsid: target security identifier
* @tclass: target security class
* @ae: AVC entry
* @aeref: AVC entry reference
*
* Insert an AVC entry for the SID pair
* (@ssid, @tsid) and class @tclass.
* The access vectors and the sequence number are
* normally provided by the security server in
* response to a security_compute_av() call. If the
* sequence number @ae->avd.seqno is not less than the latest
* revocation notification, then the function copies
* the access vectors into a cache entry, updates
* @aeref to refer to the entry, and returns %0.
* Otherwise, this function returns -%EAGAIN.
*/
int avc_insert(u32 ssid, u32 tsid, u16 tclass,
struct avc_entry *ae, struct avc_entry_ref *aeref)
{
struct avc_node *node;
int rc = 0;
if (ae->avd.seqno < avc_cache.latest_notif) {
printk(KERN_WARNING "avc: seqno %d < latest_notif %d\n",
ae->avd.seqno, avc_cache.latest_notif);
rc = -EAGAIN;
goto out;
}
node = avc_claim_node(ssid, tsid, tclass);
if (!node) {
rc = -ENOMEM;
goto out;
}
node->ae.avd.allowed = ae->avd.allowed;
node->ae.avd.decided = ae->avd.decided;
node->ae.avd.auditallow = ae->avd.auditallow;
node->ae.avd.auditdeny = ae->avd.auditdeny;
node->ae.avd.seqno = ae->avd.seqno;
aeref->ae = &node->ae;
out:
return rc;
}
static inline void avc_print_ipv6_addr(struct audit_buffer *ab,
struct in6_addr *addr, u16 port,
char *name1, char *name2)
{
if (!ipv6_addr_any(addr))
audit_log_format(ab, " %s=%04x:%04x:%04x:%04x:%04x:"
"%04x:%04x:%04x", name1, NIP6(*addr));
if (port)
audit_log_format(ab, " %s=%d", name2, ntohs(port));
}
static inline void avc_print_ipv4_addr(struct audit_buffer *ab, u32 addr,
u16 port, char *name1, char *name2)
{
if (addr)
audit_log_format(ab, " %s=%d.%d.%d.%d", name1, NIPQUAD(addr));
if (port)
audit_log_format(ab, " %s=%d", name2, ntohs(port));
}
/**
* avc_audit - Audit the granting or denial of permissions.
* @ssid: source security identifier
* @tsid: target security identifier
* @tclass: target security class
* @requested: requested permissions
* @avd: access vector decisions
* @result: result from avc_has_perm_noaudit
* @a: auxiliary audit data
*
* Audit the granting or denial of permissions in accordance
* with the policy. This function is typically called by
* avc_has_perm() after a permission check, but can also be
* called directly by callers who use avc_has_perm_noaudit()
* in order to separate the permission check from the auditing.
* For example, this separation is useful when the permission check must
* be performed under a lock, to allow the lock to be released
* before calling the auditing code.
*/
void avc_audit(u32 ssid, u32 tsid,
u16 tclass, u32 requested,
struct av_decision *avd, int result, struct avc_audit_data *a)
{
struct task_struct *tsk = current;
struct inode *inode = NULL;
u32 denied, audited;
struct audit_buffer *ab;
denied = requested & ~avd->allowed;
if (denied) {
audited = denied;
if (!(audited & avd->auditdeny))
return;
} else if (result) {
audited = denied = requested;
} else {
audited = requested;
if (!(audited & avd->auditallow))
return;
}
ab = audit_log_start(current->audit_context);
if (!ab)
return; /* audit_panic has been called */
audit_log_format(ab, "avc: %s ", denied ? "denied" : "granted");
avc_dump_av(ab, tclass,audited);
audit_log_format(ab, " for ");
if (a && a->tsk)
tsk = a->tsk;
if (tsk && tsk->pid) {
struct mm_struct *mm;
struct vm_area_struct *vma;
audit_log_format(ab, " pid=%d", tsk->pid);
if (tsk == current)
mm = current->mm;
else
mm = get_task_mm(tsk);
if (mm) {
if (down_read_trylock(&mm->mmap_sem)) {
vma = mm->mmap;
while (vma) {
if ((vma->vm_flags & VM_EXECUTABLE) &&
vma->vm_file) {
audit_log_d_path(ab, "exe=",
vma->vm_file->f_dentry,
vma->vm_file->f_vfsmnt);
break;
}
vma = vma->vm_next;
}
up_read(&mm->mmap_sem);
}
if (tsk != current)
mmput(mm);
} else {
audit_log_format(ab, " comm=%s", tsk->comm);
}
}
if (a) {
switch (a->type) {
case AVC_AUDIT_DATA_IPC:
audit_log_format(ab, " key=%d", a->u.ipc_id);
break;
case AVC_AUDIT_DATA_CAP:
audit_log_format(ab, " capability=%d", a->u.cap);
break;
case AVC_AUDIT_DATA_FS:
if (a->u.fs.dentry) {
struct dentry *dentry = a->u.fs.dentry;
if (a->u.fs.mnt) {
audit_log_d_path(ab, "path=", dentry,
a->u.fs.mnt);
} else {
audit_log_format(ab, " name=%s",
dentry->d_name.name);
}
inode = dentry->d_inode;
} else if (a->u.fs.inode) {
struct dentry *dentry;
inode = a->u.fs.inode;
dentry = d_find_alias(inode);
if (dentry) {
audit_log_format(ab, " name=%s",
dentry->d_name.name);
dput(dentry);
}
}
if (inode)
audit_log_format(ab, " dev=%s ino=%ld",
inode->i_sb->s_id,
inode->i_ino);
break;
case AVC_AUDIT_DATA_NET:
if (a->u.net.sk) {
struct sock *sk = a->u.net.sk;
struct unix_sock *u;
int len = 0;
char *p = NULL;
switch (sk->sk_family) {
case AF_INET: {
struct inet_opt *inet = inet_sk(sk);
avc_print_ipv4_addr(ab, inet->rcv_saddr,
inet->sport,
"laddr", "lport");
avc_print_ipv4_addr(ab, inet->daddr,
inet->dport,
"faddr", "fport");
break;
}
case AF_INET6: {
struct inet_opt *inet = inet_sk(sk);
struct ipv6_pinfo *inet6 = inet6_sk(sk);
avc_print_ipv6_addr(ab, &inet6->rcv_saddr,
inet->sport,
"laddr", "lport");
avc_print_ipv6_addr(ab, &inet6->daddr,
inet->dport,
"faddr", "fport");
break;
}
case AF_UNIX:
u = unix_sk(sk);
if (u->dentry) {
audit_log_d_path(ab, "path=",
u->dentry, u->mnt);
break;
}
if (!u->addr)
break;
len = u->addr->len-sizeof(short);
p = &u->addr->name->sun_path[0];
if (*p)
audit_log_format(ab,
"path=%*.*s", len,
len, p);
else
audit_log_format(ab,
"path=@%*.*s", len-1,
len-1, p+1);
break;
}
}
switch (a->u.net.family) {
case AF_INET:
avc_print_ipv4_addr(ab, a->u.net.v4info.saddr,
a->u.net.sport,
"saddr", "src");
avc_print_ipv4_addr(ab, a->u.net.v4info.daddr,
a->u.net.dport,
"daddr", "dest");
break;
case AF_INET6:
avc_print_ipv6_addr(ab, &a->u.net.v6info.saddr,
a->u.net.sport,
"saddr", "src");
avc_print_ipv6_addr(ab, &a->u.net.v6info.daddr,
a->u.net.dport,
"daddr", "dest");
break;
}
if (a->u.net.netif)
audit_log_format(ab, " netif=%s",
a->u.net.netif);
break;
}
}
audit_log_format(ab, " ");
avc_dump_query(ab, ssid, tsid, tclass);
audit_log_end(ab);
}
/**
* avc_add_callback - Register a callback for security events.
* @callback: callback function
* @events: security events
* @ssid: source security identifier or %SECSID_WILD
* @tsid: target security identifier or %SECSID_WILD
* @tclass: target security class
* @perms: permissions
*
* Register a callback function for events in the set @events
* related to the SID pair (@ssid, @tsid) and
* and the permissions @perms, interpreting
* @perms based on @tclass. Returns %0 on success or
* -%ENOMEM if insufficient memory exists to add the callback.
*/
int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid,
u16 tclass, u32 perms,
u32 *out_retained),
u32 events, u32 ssid, u32 tsid,
u16 tclass, u32 perms)
{
struct avc_callback_node *c;
int rc = 0;
c = kmalloc(sizeof(*c), GFP_ATOMIC);
if (!c) {
rc = -ENOMEM;
goto out;
}
c->callback = callback;
c->events = events;
c->ssid = ssid;
c->tsid = tsid;
c->perms = perms;
c->next = avc_callbacks;
avc_callbacks = c;
out:
return rc;
}
static inline int avc_sidcmp(u32 x, u32 y)
{
return (x == y || x == SECSID_WILD || y == SECSID_WILD);
}
static inline void avc_update_node(u32 event, struct avc_node *node, u32 perms)
{
switch (event) {
case AVC_CALLBACK_GRANT:
node->ae.avd.allowed |= perms;
break;
case AVC_CALLBACK_TRY_REVOKE:
case AVC_CALLBACK_REVOKE:
node->ae.avd.allowed &= ~perms;
break;
case AVC_CALLBACK_AUDITALLOW_ENABLE:
node->ae.avd.auditallow |= perms;
break;
case AVC_CALLBACK_AUDITALLOW_DISABLE:
node->ae.avd.auditallow &= ~perms;
break;
case AVC_CALLBACK_AUDITDENY_ENABLE:
node->ae.avd.auditdeny |= perms;
break;
case AVC_CALLBACK_AUDITDENY_DISABLE:
node->ae.avd.auditdeny &= ~perms;
break;
}
}
static int avc_update_cache(u32 event, u32 ssid, u32 tsid,
u16 tclass, u32 perms)
{
struct avc_node *node;
int i;
unsigned long flags;
spin_lock_irqsave(&avc_lock,flags);
if (ssid == SECSID_WILD || tsid == SECSID_WILD) {
/* apply to all matching nodes */
for (i = 0; i < AVC_CACHE_SLOTS; i++) {
for (node = avc_cache.slots[i]; node;
node = node->next) {
if (avc_sidcmp(ssid, node->ae.ssid) &&
avc_sidcmp(tsid, node->ae.tsid) &&
tclass == node->ae.tclass) {
avc_update_node(event,node,perms);
}
}
}
} else {
/* apply to one node */
node = avc_search_node(ssid, tsid, tclass, NULL);
if (node) {
avc_update_node(event,node,perms);
}
}
spin_unlock_irqrestore(&avc_lock,flags);
return 0;
}
static int avc_control(u32 event, u32 ssid, u32 tsid,
u16 tclass, u32 perms,
u32 seqno, u32 *out_retained)
{
struct avc_callback_node *c;
u32 tretained = 0, cretained = 0;
int rc = 0;
unsigned long flags;
/*
* try_revoke only removes permissions from the cache
* state if they are not retained by the object manager.
* Hence, try_revoke must wait until after the callbacks have
* been invoked to update the cache state.
*/
if (event != AVC_CALLBACK_TRY_REVOKE)
avc_update_cache(event,ssid,tsid,tclass,perms);
for (c = avc_callbacks; c; c = c->next)
{
if ((c->events & event) &&
avc_sidcmp(c->ssid, ssid) &&
avc_sidcmp(c->tsid, tsid) &&
c->tclass == tclass &&
(c->perms & perms)) {
cretained = 0;
rc = c->callback(event, ssid, tsid, tclass,
(c->perms & perms),
&cretained);
if (rc)
goto out;
tretained |= cretained;
}
}
if (event == AVC_CALLBACK_TRY_REVOKE) {
/* revoke any unretained permissions */
perms &= ~tretained;
avc_update_cache(event,ssid,tsid,tclass,perms);
*out_retained = tretained;
}
spin_lock_irqsave(&avc_lock,flags);
if (seqno > avc_cache.latest_notif)
avc_cache.latest_notif = seqno;
spin_unlock_irqrestore(&avc_lock,flags);
out:
return rc;
}
/**
* avc_ss_grant - Grant previously denied permissions.
* @ssid: source security identifier or %SECSID_WILD
* @tsid: target security identifier or %SECSID_WILD
* @tclass: target security class
* @perms: permissions to grant
* @seqno: policy sequence number
*/
int avc_ss_grant(u32 ssid, u32 tsid, u16 tclass,
u32 perms, u32 seqno)
{
return avc_control(AVC_CALLBACK_GRANT,
ssid, tsid, tclass, perms, seqno, NULL);
}
/**
* avc_ss_try_revoke - Try to revoke previously granted permissions.
* @ssid: source security identifier or %SECSID_WILD
* @tsid: target security identifier or %SECSID_WILD
* @tclass: target security class
* @perms: permissions to grant
* @seqno: policy sequence number
* @out_retained: subset of @perms that are retained
*
* Try to revoke previously granted permissions, but
* only if they are not retained as migrated permissions.
* Return the subset of permissions that are retained via @out_retained.
*/
int avc_ss_try_revoke(u32 ssid, u32 tsid, u16 tclass,
u32 perms, u32 seqno, u32 *out_retained)
{
return avc_control(AVC_CALLBACK_TRY_REVOKE,
ssid, tsid, tclass, perms, seqno, out_retained);
}
/**
* avc_ss_revoke - Revoke previously granted permissions.
* @ssid: source security identifier or %SECSID_WILD
* @tsid: target security identifier or %SECSID_WILD
* @tclass: target security class
* @perms: permissions to grant
* @seqno: policy sequence number
*
* Revoke previously granted permissions, even if
* they are retained as migrated permissions.
*/
int avc_ss_revoke(u32 ssid, u32 tsid, u16 tclass,
u32 perms, u32 seqno)
{
return avc_control(AVC_CALLBACK_REVOKE,
ssid, tsid, tclass, perms, seqno, NULL);
}
/**
* avc_ss_reset - Flush the cache and revalidate migrated permissions.
* @seqno: policy sequence number
*/
int avc_ss_reset(u32 seqno)
{
struct avc_callback_node *c;
int i, rc = 0;
struct avc_node *node, *tmp;
unsigned long flags;
avc_hash_eval("reset");
spin_lock_irqsave(&avc_lock,flags);
for (i = 0; i < AVC_CACHE_SLOTS; i++) {
node = avc_cache.slots[i];
while (node) {
tmp = node;
node = node->next;
tmp->ae.ssid = tmp->ae.tsid = SECSID_NULL;
tmp->ae.tclass = SECCLASS_NULL;
tmp->ae.avd.allowed = tmp->ae.avd.decided = 0;
tmp->ae.avd.auditallow = tmp->ae.avd.auditdeny = 0;
tmp->ae.used = 0;
tmp->next = avc_node_freelist;
avc_node_freelist = tmp;
avc_cache.active_nodes--;
}
avc_cache.slots[i] = NULL;
}
avc_cache.lru_hint = 0;
spin_unlock_irqrestore(&avc_lock,flags);
for (i = 0; i < AVC_NSTATS; i++)
avc_cache_stats[i] = 0;
for (c = avc_callbacks; c; c = c->next) {
if (c->events & AVC_CALLBACK_RESET) {
rc = c->callback(AVC_CALLBACK_RESET,
0, 0, 0, 0, NULL);
if (rc)
goto out;
}
}
spin_lock_irqsave(&avc_lock,flags);
if (seqno > avc_cache.latest_notif)
avc_cache.latest_notif = seqno;
spin_unlock_irqrestore(&avc_lock,flags);
out:
return rc;
}
/**
* avc_ss_set_auditallow - Enable or disable auditing of granted permissions.
* @ssid: source security identifier or %SECSID_WILD
* @tsid: target security identifier or %SECSID_WILD
* @tclass: target security class
* @perms: permissions to grant
* @seqno: policy sequence number
* @enable: enable flag.
*/
int avc_ss_set_auditallow(u32 ssid, u32 tsid, u16 tclass,
u32 perms, u32 seqno, u32 enable)
{
if (enable)
return avc_control(AVC_CALLBACK_AUDITALLOW_ENABLE,
ssid, tsid, tclass, perms, seqno, NULL);
else
return avc_control(AVC_CALLBACK_AUDITALLOW_DISABLE,
ssid, tsid, tclass, perms, seqno, NULL);
}
/**
* avc_ss_set_auditdeny - Enable or disable auditing of denied permissions.
* @ssid: source security identifier or %SECSID_WILD
* @tsid: target security identifier or %SECSID_WILD
* @tclass: target security class
* @perms: permissions to grant
* @seqno: policy sequence number
* @enable: enable flag.
*/
int avc_ss_set_auditdeny(u32 ssid, u32 tsid, u16 tclass,
u32 perms, u32 seqno, u32 enable)
{
if (enable)
return avc_control(AVC_CALLBACK_AUDITDENY_ENABLE,
ssid, tsid, tclass, perms, seqno, NULL);
else
return avc_control(AVC_CALLBACK_AUDITDENY_DISABLE,
ssid, tsid, tclass, perms, seqno, NULL);
}
/**
* avc_has_perm_noaudit - Check permissions but perform no auditing.
* @ssid: source security identifier
* @tsid: target security identifier
* @tclass: target security class
* @requested: requested permissions, interpreted based on @tclass
* @aeref: AVC entry reference
* @avd: access vector decisions
*
* Check the AVC to determine whether the @requested permissions are granted
* for the SID pair (@ssid, @tsid), interpreting the permissions
* based on @tclass, and call the security server on a cache miss to obtain
* a new decision and add it to the cache. Update @aeref to refer to an AVC
* entry with the resulting decisions, and return a copy of the decisions
* in @avd. Return %0 if all @requested permissions are granted,
* -%EACCES if any permissions are denied, or another -errno upon
* other errors. This function is typically called by avc_has_perm(),
* but may also be called directly to separate permission checking from
* auditing, e.g. in cases where a lock must be held for the check but
* should be released for the auditing.
*/
int avc_has_perm_noaudit(u32 ssid, u32 tsid,
u16 tclass, u32 requested,
struct avc_entry_ref *aeref, struct av_decision *avd)
{
struct avc_entry *ae;
int rc = 0;
unsigned long flags;
struct avc_entry entry;
u32 denied;
struct avc_entry_ref ref;
if (!aeref) {
avc_entry_ref_init(&ref);
aeref = &ref;
}
spin_lock_irqsave(&avc_lock, flags);
avc_cache_stats_incr(AVC_ENTRY_LOOKUPS);
ae = aeref->ae;
if (ae) {
if (ae->ssid == ssid &&
ae->tsid == tsid &&
ae->tclass == tclass &&
((ae->avd.decided & requested) == requested)) {
avc_cache_stats_incr(AVC_ENTRY_HITS);
ae->used = 1;
} else {
avc_cache_stats_incr(AVC_ENTRY_DISCARDS);
ae = NULL;
}
}
if (!ae) {
avc_cache_stats_incr(AVC_ENTRY_MISSES);
rc = avc_lookup(ssid, tsid, tclass, requested, aeref);
if (rc) {
spin_unlock_irqrestore(&avc_lock,flags);
rc = security_compute_av(ssid,tsid,tclass,requested,&entry.avd);
if (rc)
goto out;
spin_lock_irqsave(&avc_lock, flags);
rc = avc_insert(ssid,tsid,tclass,&entry,aeref);
if (rc) {
spin_unlock_irqrestore(&avc_lock,flags);
goto out;
}
}
ae = aeref->ae;
}
if (avd)
memcpy(avd, &ae->avd, sizeof(*avd));
denied = requested & ~(ae->avd.allowed);
if (!requested || denied) {
if (selinux_enforcing) {
spin_unlock_irqrestore(&avc_lock,flags);
rc = -EACCES;
goto out;
} else {
ae->avd.allowed |= requested;
spin_unlock_irqrestore(&avc_lock,flags);
goto out;
}
}
spin_unlock_irqrestore(&avc_lock,flags);
out:
return rc;
}
/**
* avc_has_perm - Check permissions and perform any appropriate auditing.
* @ssid: source security identifier
* @tsid: target security identifier
* @tclass: target security class
* @requested: requested permissions, interpreted based on @tclass
* @aeref: AVC entry reference
* @auditdata: auxiliary audit data
*
* Check the AVC to determine whether the @requested permissions are granted
* for the SID pair (@ssid, @tsid), interpreting the permissions
* based on @tclass, and call the security server on a cache miss to obtain
* a new decision and add it to the cache. Update @aeref to refer to an AVC
* entry with the resulting decisions. Audit the granting or denial of
* permissions in accordance with the policy. Return %0 if all @requested
* permissions are granted, -%EACCES if any permissions are denied, or
* another -errno upon other errors.
*/
int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
u32 requested, struct avc_entry_ref *aeref,
struct avc_audit_data *auditdata)
{
struct av_decision avd;
int rc;
rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, aeref, &avd);
avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata);
return rc;
}