This repository has been archived on 2023-08-20. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
RescueBootCD/extra/linux-2.6.10/drivers/net/s2io.c

4394 lines
121 KiB
C

/************************************************************************
* s2io.c: A Linux PCI-X Ethernet driver for S2IO 10GbE Server NIC
* Copyright(c) 2002-2005 S2IO Technologies
* This software may be used and distributed according to the terms of
* the GNU General Public License (GPL), incorporated herein by reference.
* Drivers based on or derived from this code fall under the GPL and must
* retain the authorship, copyright and license notice. This file is not
* a complete program and may only be used when the entire operating
* system is licensed under the GPL.
* See the file COPYING in this distribution for more information.
*
* Credits:
* Jeff Garzik : For pointing out the improper error condition
* check in the s2io_xmit routine and also some
* issues in the Tx watch dog function. Also for
* patiently answering all those innumerable
* questions regaring the 2.6 porting issues.
* Stephen Hemminger : Providing proper 2.6 porting mechanism for some
* macros available only in 2.6 Kernel.
* Francois Romieu : For pointing out all code part that were
* deprecated and also styling related comments.
* Grant Grundler : For helping me get rid of some Architecture
* dependent code.
* Christopher Hellwig : Some more 2.6 specific issues in the driver.
*
* The module loadable parameters that are supported by the driver and a brief
* explaination of all the variables.
* ring_num : This can be used to program the number of receive rings used
* in the driver.
* frame_len: This is an array of size 8. Using this we can set the maximum
* size of the received frame that can be steered into the corrsponding
* receive ring.
* ring_len: This defines the number of descriptors each ring can have. This
* is also an array of size 8.
* fifo_num: This defines the number of Tx FIFOs thats used int the driver.
* fifo_len: This too is an array of 8. Each element defines the number of
* Tx descriptors that can be associated with each corresponding FIFO.
* latency_timer: This input is programmed into the Latency timer register
* in PCI Configuration space.
************************************************************************/
#include<linux/config.h>
#include<linux/module.h>
#include<linux/types.h>
#include<linux/errno.h>
#include<linux/ioport.h>
#include<linux/pci.h>
#include<linux/kernel.h>
#include<linux/netdevice.h>
#include<linux/etherdevice.h>
#include<linux/skbuff.h>
#include<linux/init.h>
#include<linux/delay.h>
#include<linux/stddef.h>
#include<linux/ioctl.h>
#include<linux/timex.h>
#include<linux/sched.h>
#include<linux/ethtool.h>
#include<asm/system.h>
#include<asm/uaccess.h>
#include<linux/version.h>
#include<asm/io.h>
#include<linux/workqueue.h>
/* local include */
#include "s2io.h"
#include "s2io-regs.h"
/* S2io Driver name & version. */
static char s2io_driver_name[] = "s2io";
static char s2io_driver_version[] = "Version 1.0";
#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
#define TASKLET_IN_USE test_and_set_bit(0, \
(unsigned long *)(&sp->tasklet_status))
#define PANIC 1
#define LOW 2
static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring)
{
int level = 0;
if ((sp->pkt_cnt[ring] - rxb_size) > 128) {
level = LOW;
if (rxb_size < sp->pkt_cnt[ring] / 8)
level = PANIC;
}
return level;
}
/* Ethtool related variables and Macros. */
static char s2io_gstrings[][ETH_GSTRING_LEN] = {
"Register test\t(offline)",
"Eeprom test\t(offline)",
"Link test\t(online)",
"RLDRAM test\t(offline)",
"BIST Test\t(offline)"
};
static char ethtool_stats_keys[][ETH_GSTRING_LEN] = {
"tmac_frms",
"tmac_data_octets",
"tmac_drop_frms",
"tmac_mcst_frms",
"tmac_bcst_frms",
"tmac_pause_ctrl_frms",
"tmac_any_err_frms",
"tmac_vld_ip_octets",
"tmac_vld_ip",
"tmac_drop_ip",
"tmac_icmp",
"tmac_rst_tcp",
"tmac_tcp",
"tmac_udp",
"rmac_vld_frms",
"rmac_data_octets",
"rmac_fcs_err_frms",
"rmac_drop_frms",
"rmac_vld_mcst_frms",
"rmac_vld_bcst_frms",
"rmac_in_rng_len_err_frms",
"rmac_long_frms",
"rmac_pause_ctrl_frms",
"rmac_discarded_frms",
"rmac_usized_frms",
"rmac_osized_frms",
"rmac_frag_frms",
"rmac_jabber_frms",
"rmac_ip",
"rmac_ip_octets",
"rmac_hdr_err_ip",
"rmac_drop_ip",
"rmac_icmp",
"rmac_tcp",
"rmac_udp",
"rmac_err_drp_udp",
"rmac_pause_cnt",
"rmac_accepted_ip",
"rmac_err_tcp",
};
#define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN
#define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN
#define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
#define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
/* Constants to be programmed into the Xena's registers to configure
* the XAUI.
*/
#define SWITCH_SIGN 0xA5A5A5A5A5A5A5A5ULL
#define END_SIGN 0x0
static u64 default_mdio_cfg[] = {
/* Reset PMA PLL */
0xC001010000000000ULL, 0xC0010100000000E0ULL,
0xC0010100008000E4ULL,
/* Remove Reset from PMA PLL */
0xC001010000000000ULL, 0xC0010100000000E0ULL,
0xC0010100000000E4ULL,
END_SIGN
};
static u64 default_dtx_cfg[] = {
0x8000051500000000ULL, 0x80000515000000E0ULL,
0x80000515D93500E4ULL, 0x8001051500000000ULL,
0x80010515000000E0ULL, 0x80010515001E00E4ULL,
0x8002051500000000ULL, 0x80020515000000E0ULL,
0x80020515F21000E4ULL,
/* Set PADLOOPBACKN */
0x8002051500000000ULL, 0x80020515000000E0ULL,
0x80020515B20000E4ULL, 0x8003051500000000ULL,
0x80030515000000E0ULL, 0x80030515B20000E4ULL,
0x8004051500000000ULL, 0x80040515000000E0ULL,
0x80040515B20000E4ULL, 0x8005051500000000ULL,
0x80050515000000E0ULL, 0x80050515B20000E4ULL,
SWITCH_SIGN,
/* Remove PADLOOPBACKN */
0x8002051500000000ULL, 0x80020515000000E0ULL,
0x80020515F20000E4ULL, 0x8003051500000000ULL,
0x80030515000000E0ULL, 0x80030515F20000E4ULL,
0x8004051500000000ULL, 0x80040515000000E0ULL,
0x80040515F20000E4ULL, 0x8005051500000000ULL,
0x80050515000000E0ULL, 0x80050515F20000E4ULL,
END_SIGN
};
/* Constants for Fixing the MacAddress problem seen mostly on
* Alpha machines.
*/
static u64 fix_mac[] = {
0x0060000000000000ULL, 0x0060600000000000ULL,
0x0040600000000000ULL, 0x0000600000000000ULL,
0x0020600000000000ULL, 0x0060600000000000ULL,
0x0020600000000000ULL, 0x0060600000000000ULL,
0x0020600000000000ULL, 0x0060600000000000ULL,
0x0020600000000000ULL, 0x0060600000000000ULL,
0x0020600000000000ULL, 0x0060600000000000ULL,
0x0020600000000000ULL, 0x0060600000000000ULL,
0x0020600000000000ULL, 0x0060600000000000ULL,
0x0020600000000000ULL, 0x0060600000000000ULL,
0x0020600000000000ULL, 0x0060600000000000ULL,
0x0020600000000000ULL, 0x0060600000000000ULL,
0x0020600000000000ULL, 0x0000600000000000ULL,
0x0040600000000000ULL, 0x0060600000000000ULL,
END_SIGN
};
/* Module Loadable parameters. */
static u32 ring_num;
static u32 frame_len[MAX_RX_RINGS];
static u32 ring_len[MAX_RX_RINGS];
static u32 fifo_num;
static u32 fifo_len[MAX_TX_FIFOS];
static u32 rx_prio;
static u32 tx_prio;
static u8 latency_timer = 0;
/*
* S2IO device table.
* This table lists all the devices that this driver supports.
*/
static struct pci_device_id s2io_tbl[] __devinitdata = {
{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
PCI_ANY_ID, PCI_ANY_ID},
{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
PCI_ANY_ID, PCI_ANY_ID},
{0,}
};
MODULE_DEVICE_TABLE(pci, s2io_tbl);
static struct pci_driver s2io_driver = {
.name = "S2IO",
.id_table = s2io_tbl,
.probe = s2io_init_nic,
.remove = __devexit_p(s2io_rem_nic),
};
/*
* Input Arguments:
* Device private variable.
* Return Value:
* SUCCESS on success and an appropriate -ve value on failure.
* Description:
* The function allocates the all memory areas shared
* between the NIC and the driver. This includes Tx descriptors,
* Rx descriptors and the statistics block.
*/
static int initSharedMem(struct s2io_nic *nic)
{
u32 size;
void *tmp_v_addr, *tmp_v_addr_next;
dma_addr_t tmp_p_addr, tmp_p_addr_next;
RxD_block_t *pre_rxd_blk = NULL;
int i, j, blk_cnt;
struct net_device *dev = nic->dev;
mac_info_t *mac_control;
struct config_param *config;
mac_control = &nic->mac_control;
config = &nic->config;
/* Allocation and initialization of TXDLs in FIOFs */
size = 0;
for (i = 0; i < config->TxFIFONum; i++) {
size += config->TxCfg[i].FifoLen;
}
if (size > MAX_AVAILABLE_TXDS) {
DBG_PRINT(ERR_DBG, "%s: Total number of Tx FIFOs ",
dev->name);
DBG_PRINT(ERR_DBG, "exceeds the maximum value ");
DBG_PRINT(ERR_DBG, "that can be used\n");
return FAILURE;
}
size *= (sizeof(TxD_t) * config->MaxTxDs);
mac_control->txd_list_mem = pci_alloc_consistent
(nic->pdev, size, &mac_control->txd_list_mem_phy);
if (!mac_control->txd_list_mem) {
return -ENOMEM;
}
mac_control->txd_list_mem_sz = size;
tmp_v_addr = mac_control->txd_list_mem;
tmp_p_addr = mac_control->txd_list_mem_phy;
memset(tmp_v_addr, 0, size);
DBG_PRINT(INIT_DBG, "%s:List Mem PHY: 0x%llx\n", dev->name,
(unsigned long long) tmp_p_addr);
for (i = 0; i < config->TxFIFONum; i++) {
mac_control->txdl_start_phy[i] = tmp_p_addr;
mac_control->txdl_start[i] = (TxD_t *) tmp_v_addr;
mac_control->tx_curr_put_info[i].offset = 0;
mac_control->tx_curr_put_info[i].fifo_len =
config->TxCfg[i].FifoLen - 1;
mac_control->tx_curr_get_info[i].offset = 0;
mac_control->tx_curr_get_info[i].fifo_len =
config->TxCfg[i].FifoLen - 1;
tmp_p_addr +=
(config->TxCfg[i].FifoLen * (sizeof(TxD_t)) *
config->MaxTxDs);
tmp_v_addr +=
(config->TxCfg[i].FifoLen * (sizeof(TxD_t)) *
config->MaxTxDs);
}
/* Allocation and initialization of RXDs in Rings */
size = 0;
for (i = 0; i < config->RxRingNum; i++) {
if (config->RxCfg[i].NumRxd % (MAX_RXDS_PER_BLOCK + 1)) {
DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
i);
DBG_PRINT(ERR_DBG, "RxDs per Block");
return FAILURE;
}
size += config->RxCfg[i].NumRxd;
nic->block_count[i] =
config->RxCfg[i].NumRxd / (MAX_RXDS_PER_BLOCK + 1);
nic->pkt_cnt[i] =
config->RxCfg[i].NumRxd - nic->block_count[i];
}
size = (size * (sizeof(RxD_t)));
mac_control->rxd_ring_mem_sz = size;
for (i = 0; i < config->RxRingNum; i++) {
mac_control->rx_curr_get_info[i].block_index = 0;
mac_control->rx_curr_get_info[i].offset = 0;
mac_control->rx_curr_get_info[i].ring_len =
config->RxCfg[i].NumRxd - 1;
mac_control->rx_curr_put_info[i].block_index = 0;
mac_control->rx_curr_put_info[i].offset = 0;
mac_control->rx_curr_put_info[i].ring_len =
config->RxCfg[i].NumRxd - 1;
blk_cnt =
config->RxCfg[i].NumRxd / (MAX_RXDS_PER_BLOCK + 1);
/* Allocating all the Rx blocks */
for (j = 0; j < blk_cnt; j++) {
size = (MAX_RXDS_PER_BLOCK + 1) * (sizeof(RxD_t));
tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
&tmp_p_addr);
if (tmp_v_addr == NULL) {
/* In case of failure, freeSharedMem()
* is called, which should free any
* memory that was alloced till the
* failure happened.
*/
nic->rx_blocks[i][j].block_virt_addr =
tmp_v_addr;
return -ENOMEM;
}
memset(tmp_v_addr, 0, size);
nic->rx_blocks[i][j].block_virt_addr = tmp_v_addr;
nic->rx_blocks[i][j].block_dma_addr = tmp_p_addr;
}
/* Interlinking all Rx Blocks */
for (j = 0; j < blk_cnt; j++) {
tmp_v_addr = nic->rx_blocks[i][j].block_virt_addr;
tmp_v_addr_next =
nic->rx_blocks[i][(j + 1) %
blk_cnt].block_virt_addr;
tmp_p_addr = nic->rx_blocks[i][j].block_dma_addr;
tmp_p_addr_next =
nic->rx_blocks[i][(j + 1) %
blk_cnt].block_dma_addr;
pre_rxd_blk = (RxD_block_t *) tmp_v_addr;
pre_rxd_blk->reserved_1 = END_OF_BLOCK; /* last RxD
* marker.
*/
pre_rxd_blk->reserved_2_pNext_RxD_block =
(unsigned long) tmp_v_addr_next;
pre_rxd_blk->pNext_RxD_Blk_physical =
(u64) tmp_p_addr_next;
}
}
/* Allocation and initialization of Statistics block */
size = sizeof(StatInfo_t);
mac_control->stats_mem = pci_alloc_consistent
(nic->pdev, size, &mac_control->stats_mem_phy);
if (!mac_control->stats_mem) {
/* In case of failure, freeSharedMem() is called, which
* should free any memory that was alloced till the
* failure happened.
*/
return -ENOMEM;
}
mac_control->stats_mem_sz = size;
tmp_v_addr = mac_control->stats_mem;
mac_control->StatsInfo = (StatInfo_t *) tmp_v_addr;
memset(tmp_v_addr, 0, size);
DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
(unsigned long long) tmp_p_addr);
return SUCCESS;
}
/*
* Input Arguments:
* Device peivate variable.
* Return Value:
* NONE
* Description:
* This function is to free all memory locations allocated by
* the initSharedMem() function and return it to the kernel.
*/
static void freeSharedMem(struct s2io_nic *nic)
{
int i, j, blk_cnt, size;
void *tmp_v_addr;
dma_addr_t tmp_p_addr;
mac_info_t *mac_control;
struct config_param *config;
if (!nic)
return;
mac_control = &nic->mac_control;
config = &nic->config;
if (mac_control->txd_list_mem) {
pci_free_consistent(nic->pdev,
mac_control->txd_list_mem_sz,
mac_control->txd_list_mem,
mac_control->txd_list_mem_phy);
}
size = (MAX_RXDS_PER_BLOCK + 1) * (sizeof(RxD_t));
for (i = 0; i < config->RxRingNum; i++) {
blk_cnt = nic->block_count[i];
for (j = 0; j < blk_cnt; j++) {
tmp_v_addr = nic->rx_blocks[i][j].block_virt_addr;
tmp_p_addr = nic->rx_blocks[i][j].block_dma_addr;
if (tmp_v_addr == NULL)
break;
pci_free_consistent(nic->pdev, size,
tmp_v_addr, tmp_p_addr);
}
}
if (mac_control->stats_mem) {
pci_free_consistent(nic->pdev,
mac_control->stats_mem_sz,
mac_control->stats_mem,
mac_control->stats_mem_phy);
}
}
/*
* Input Arguments:
* device peivate variable
* Return Value:
* SUCCESS on success and '-1' on failure (endian settings incorrect).
* Description:
* The function sequentially configures every block
* of the H/W from their reset values.
*/
static int initNic(struct s2io_nic *nic)
{
XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
struct net_device *dev = nic->dev;
register u64 val64 = 0;
void *add;
u32 time;
int i, j;
mac_info_t *mac_control;
struct config_param *config;
int mdio_cnt = 0, dtx_cnt = 0;
unsigned long long print_var, mem_share;
mac_control = &nic->mac_control;
config = &nic->config;
/* Set proper endian settings and verify the same by
* reading the PIF Feed-back register.
*/
#ifdef __BIG_ENDIAN
/* The device by default set to a big endian format, so
* a big endian driver need not set anything.
*/
writeq(0xffffffffffffffffULL, &bar0->swapper_ctrl);
val64 = (SWAPPER_CTRL_PIF_R_FE |
SWAPPER_CTRL_PIF_R_SE |
SWAPPER_CTRL_PIF_W_FE |
SWAPPER_CTRL_PIF_W_SE |
SWAPPER_CTRL_TXP_FE |
SWAPPER_CTRL_TXP_SE |
SWAPPER_CTRL_TXD_R_FE |
SWAPPER_CTRL_TXD_W_FE |
SWAPPER_CTRL_TXF_R_FE |
SWAPPER_CTRL_RXD_R_FE |
SWAPPER_CTRL_RXD_W_FE |
SWAPPER_CTRL_RXF_W_FE |
SWAPPER_CTRL_XMSI_FE |
SWAPPER_CTRL_XMSI_SE |
SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
writeq(val64, &bar0->swapper_ctrl);
#else
/* Initially we enable all bits to make it accessible by
* the driver, then we selectively enable only those bits
* that we want to set.
*/
writeq(0xffffffffffffffffULL, &bar0->swapper_ctrl);
val64 = (SWAPPER_CTRL_PIF_R_FE |
SWAPPER_CTRL_PIF_R_SE |
SWAPPER_CTRL_PIF_W_FE |
SWAPPER_CTRL_PIF_W_SE |
SWAPPER_CTRL_TXP_FE |
SWAPPER_CTRL_TXP_SE |
SWAPPER_CTRL_TXD_R_FE |
SWAPPER_CTRL_TXD_R_SE |
SWAPPER_CTRL_TXD_W_FE |
SWAPPER_CTRL_TXD_W_SE |
SWAPPER_CTRL_TXF_R_FE |
SWAPPER_CTRL_RXD_R_FE |
SWAPPER_CTRL_RXD_R_SE |
SWAPPER_CTRL_RXD_W_FE |
SWAPPER_CTRL_RXD_W_SE |
SWAPPER_CTRL_RXF_W_FE |
SWAPPER_CTRL_XMSI_FE |
SWAPPER_CTRL_XMSI_SE |
SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
writeq(val64, &bar0->swapper_ctrl);
#endif
/* Verifying if endian settings are accurate by reading
* a feedback register.
*/
val64 = readq(&bar0->pif_rd_swapper_fb);
if (val64 != 0x0123456789ABCDEFULL) {
/* Endian settings are incorrect, calls for another dekko. */
print_var = (unsigned long long) val64;
DBG_PRINT(INIT_DBG, "%s: Endian settings are wrong",
dev->name);
DBG_PRINT(ERR_DBG, ", feedback read %llx\n", print_var);
return FAILURE;
}
/* Remove XGXS from reset state */
val64 = 0;
writeq(val64, &bar0->sw_reset);
val64 = readq(&bar0->sw_reset);
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(HZ / 2);
/* Enable Receiving broadcasts */
val64 = readq(&bar0->mac_cfg);
val64 |= MAC_RMAC_BCAST_ENABLE;
writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
writeq(val64, &bar0->mac_cfg);
/* Read registers in all blocks */
val64 = readq(&bar0->mac_int_mask);
val64 = readq(&bar0->mc_int_mask);
val64 = readq(&bar0->xgxs_int_mask);
/* Set MTU */
val64 = dev->mtu;
writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
/* Configuring the XAUI Interface of Xena.
*****************************************
* To Configure the Xena's XAUI, one has to write a series
* of 64 bit values into two registers in a particular
* sequence. Hence a macro 'SWITCH_SIGN' has been defined
* which will be defined in the array of configuration values
* (default_dtx_cfg & default_mdio_cfg) at appropriate places
* to switch writing from one regsiter to another. We continue
* writing these values until we encounter the 'END_SIGN' macro.
* For example, After making a series of 21 writes into
* dtx_control register the 'SWITCH_SIGN' appears and hence we
* start writing into mdio_control until we encounter END_SIGN.
*/
while (1) {
dtx_cfg:
while (default_dtx_cfg[dtx_cnt] != END_SIGN) {
if (default_dtx_cfg[dtx_cnt] == SWITCH_SIGN) {
dtx_cnt++;
goto mdio_cfg;
}
writeq(default_dtx_cfg[dtx_cnt],
&bar0->dtx_control);
val64 = readq(&bar0->dtx_control);
dtx_cnt++;
}
mdio_cfg:
while (default_mdio_cfg[mdio_cnt] != END_SIGN) {
if (default_mdio_cfg[mdio_cnt] == SWITCH_SIGN) {
mdio_cnt++;
goto dtx_cfg;
}
writeq(default_mdio_cfg[mdio_cnt],
&bar0->mdio_control);
val64 = readq(&bar0->mdio_control);
mdio_cnt++;
}
if ((default_dtx_cfg[dtx_cnt] == END_SIGN) &&
(default_mdio_cfg[mdio_cnt] == END_SIGN)) {
break;
} else {
goto dtx_cfg;
}
}
/* Tx DMA Initialization */
val64 = 0;
writeq(val64, &bar0->tx_fifo_partition_0);
writeq(val64, &bar0->tx_fifo_partition_1);
writeq(val64, &bar0->tx_fifo_partition_2);
writeq(val64, &bar0->tx_fifo_partition_3);
for (i = 0, j = 0; i < config->TxFIFONum; i++) {
val64 |=
vBIT(config->TxCfg[i].FifoLen - 1, ((i * 32) + 19),
13) | vBIT(config->TxCfg[i].FifoPriority,
((i * 32) + 5), 3);
if (i == (config->TxFIFONum - 1)) {
if (i % 2 == 0)
i++;
}
switch (i) {
case 1:
writeq(val64, &bar0->tx_fifo_partition_0);
val64 = 0;
break;
case 3:
writeq(val64, &bar0->tx_fifo_partition_1);
val64 = 0;
break;
case 5:
writeq(val64, &bar0->tx_fifo_partition_2);
val64 = 0;
break;
case 7:
writeq(val64, &bar0->tx_fifo_partition_3);
break;
}
}
/* Enable Tx FIFO partition 0. */
val64 = readq(&bar0->tx_fifo_partition_0);
val64 |= BIT(0); /* To enable the FIFO partition. */
writeq(val64, &bar0->tx_fifo_partition_0);
val64 = readq(&bar0->tx_fifo_partition_0);
DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
&bar0->tx_fifo_partition_0, (unsigned long long) val64);
/*
* Initialization of Tx_PA_CONFIG register to ignore packet
* integrity checking.
*/
val64 = readq(&bar0->tx_pa_cfg);
val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
writeq(val64, &bar0->tx_pa_cfg);
/* Rx DMA intialization. */
val64 = 0;
for (i = 0; i < config->RxRingNum; i++) {
val64 |=
vBIT(config->RxCfg[i].RingPriority, (5 + (i * 8)), 3);
}
writeq(val64, &bar0->rx_queue_priority);
/* Allocating equal share of memory to all the configured
* Rings.
*/
val64 = 0;
for (i = 0; i < config->RxRingNum; i++) {
switch (i) {
case 0:
mem_share = (64 / config->RxRingNum +
64 % config->RxRingNum);
val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
continue;
case 1:
mem_share = (64 / config->RxRingNum);
val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
continue;
case 2:
mem_share = (64 / config->RxRingNum);
val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
continue;
case 3:
mem_share = (64 / config->RxRingNum);
val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
continue;
case 4:
mem_share = (64 / config->RxRingNum);
val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
continue;
case 5:
mem_share = (64 / config->RxRingNum);
val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
continue;
case 6:
mem_share = (64 / config->RxRingNum);
val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
continue;
case 7:
mem_share = (64 / config->RxRingNum);
val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
continue;
}
}
writeq(val64, &bar0->rx_queue_cfg);
/* Initializing the Tx round robin registers to 0.
* Filling Tx and Rx round robin registers as per the
* number of FIFOs and Rings is still TODO.
*/
writeq(0, &bar0->tx_w_round_robin_0);
writeq(0, &bar0->tx_w_round_robin_1);
writeq(0, &bar0->tx_w_round_robin_2);
writeq(0, &bar0->tx_w_round_robin_3);
writeq(0, &bar0->tx_w_round_robin_4);
/* Disable Rx steering. Hard coding all packets be steered to
* Queue 0 for now.
* TODO*/
if (rx_prio) {
u64 def = 0x8000000000000000ULL, tmp;
for (i = 0; i < MAX_RX_RINGS; i++) {
tmp = (u64) (def >> (i % config->RxRingNum));
val64 |= (u64) (tmp >> (i * 8));
}
writeq(val64, &bar0->rts_qos_steering);
} else {
val64 = 0x8080808080808080ULL;
writeq(val64, &bar0->rts_qos_steering);
}
/* UDP Fix */
val64 = 0;
for (i = 1; i < 8; i++)
writeq(val64, &bar0->rts_frm_len_n[i]);
/* Set rts_frm_len register for fifo 0 */
writeq(MAC_RTS_FRM_LEN_SET(dev->mtu + 22),
&bar0->rts_frm_len_n[0]);
/* Enable statistics */
writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
val64 = SET_UPDT_PERIOD(8) | STAT_CFG_STAT_RO | STAT_CFG_STAT_EN;
writeq(val64, &bar0->stat_cfg);
/* Initializing the sampling rate for the device to calculate the
* bandwidth utilization.
*/
val64 = MAC_TX_LINK_UTIL_VAL(0x5) | MAC_RX_LINK_UTIL_VAL(0x5);
writeq(val64, &bar0->mac_link_util);
/* Initializing the Transmit and Receive Traffic Interrupt
* Scheme.
*/
/* TTI Initialization */
val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0xFFF) |
TTI_DATA1_MEM_TX_URNG_A(0xA) | TTI_DATA1_MEM_TX_URNG_B(0x10) |
TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
writeq(val64, &bar0->tti_data1_mem);
val64 =
TTI_DATA2_MEM_TX_UFC_A(0x10) | TTI_DATA2_MEM_TX_UFC_B(0x20) |
TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
writeq(val64, &bar0->tti_data2_mem);
val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
writeq(val64, &bar0->tti_command_mem);
/* Once the operation completes, the Strobe bit of the command
* register will be reset. We poll for this particular condition
* We wait for a maximum of 500ms for the operation to complete,
* if it's not complete by then we return error.
*/
time = 0;
while (TRUE) {
val64 = readq(&bar0->tti_command_mem);
if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
break;
}
if (time > 10) {
DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
dev->name);
return -1;
}
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(HZ / 20);
time++;
}
/* RTI Initialization */
val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF) |
RTI_DATA1_MEM_RX_URNG_A(0xA) | RTI_DATA1_MEM_RX_URNG_B(0x10) |
RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
writeq(val64, &bar0->rti_data1_mem);
val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) | RTI_DATA2_MEM_RX_UFC_B(0x2) |
RTI_DATA2_MEM_RX_UFC_C(0x40) | RTI_DATA2_MEM_RX_UFC_D(0x80);
writeq(val64, &bar0->rti_data2_mem);
val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD;
writeq(val64, &bar0->rti_command_mem);
/* Once the operation completes, the Strobe bit of the command
* register will be reset. We poll for this particular condition
* We wait for a maximum of 500ms for the operation to complete,
* if it's not complete by then we return error.
*/
time = 0;
while (TRUE) {
val64 = readq(&bar0->rti_command_mem);
if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
break;
}
if (time > 10) {
DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
dev->name);
return -1;
}
time++;
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(HZ / 20);
}
/* Initializing proper values as Pause threshold into all
* the 8 Queues on Rx side.
*/
writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
/* Disable RMAC PAD STRIPPING */
add = (void *) &bar0->mac_cfg;
val64 = readq(&bar0->mac_cfg);
val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
writel((u32) (val64), add);
writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
writel((u32) (val64 >> 32), (add + 4));
val64 = readq(&bar0->mac_cfg);
return SUCCESS;
}
/*
* Input Arguments:
* device private variable,
* A mask indicating which Intr block must be modified and,
* A flag indicating whether to enable or disable the Intrs.
* Return Value:
* NONE.
* Description:
* This function will either disable or enable the interrupts
* depending on the flag argument. The mask argument can be used to
* enable/disable any Intr block.
*/
static void en_dis_able_NicIntrs(struct s2io_nic *nic, u16 mask, int flag)
{
XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
register u64 val64 = 0, temp64 = 0;
/* Top level interrupt classification */
/* PIC Interrupts */
if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
/* Enable PIC Intrs in the general intr mask register */
val64 = TXPIC_INT_M | PIC_RX_INT_M;
if (flag == ENABLE_INTRS) {
temp64 = readq(&bar0->general_int_mask);
temp64 &= ~((u64) val64);
writeq(temp64, &bar0->general_int_mask);
/* Disabled all PCIX, Flash, MDIO, IIC and GPIO
* interrupts for now.
* TODO */
writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
/* No MSI Support is available presently, so TTI and
* RTI interrupts are also disabled.
*/
} else if (flag == DISABLE_INTRS) {
/* Disable PIC Intrs in the general intr mask register
*/
writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
temp64 = readq(&bar0->general_int_mask);
val64 |= temp64;
writeq(val64, &bar0->general_int_mask);
}
}
/* DMA Interrupts */
/* Enabling/Disabling Tx DMA interrupts */
if (mask & TX_DMA_INTR) {
/* Enable TxDMA Intrs in the general intr mask register */
val64 = TXDMA_INT_M;
if (flag == ENABLE_INTRS) {
temp64 = readq(&bar0->general_int_mask);
temp64 &= ~((u64) val64);
writeq(temp64, &bar0->general_int_mask);
/* Disable all interrupts other than PFC interrupt in
* DMA level.
*/
val64 = DISABLE_ALL_INTRS & (~TXDMA_PFC_INT_M);
writeq(val64, &bar0->txdma_int_mask);
/* Enable only the MISC error 1 interrupt in PFC block
*/
val64 = DISABLE_ALL_INTRS & (~PFC_MISC_ERR_1);
writeq(val64, &bar0->pfc_err_mask);
} else if (flag == DISABLE_INTRS) {
/* Disable TxDMA Intrs in the general intr mask
* register */
writeq(DISABLE_ALL_INTRS, &bar0->txdma_int_mask);
writeq(DISABLE_ALL_INTRS, &bar0->pfc_err_mask);
temp64 = readq(&bar0->general_int_mask);
val64 |= temp64;
writeq(val64, &bar0->general_int_mask);
}
}
/* Enabling/Disabling Rx DMA interrupts */
if (mask & RX_DMA_INTR) {
/* Enable RxDMA Intrs in the general intr mask register */
val64 = RXDMA_INT_M;
if (flag == ENABLE_INTRS) {
temp64 = readq(&bar0->general_int_mask);
temp64 &= ~((u64) val64);
writeq(temp64, &bar0->general_int_mask);
/* All RxDMA block interrupts are disabled for now
* TODO */
writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
} else if (flag == DISABLE_INTRS) {
/* Disable RxDMA Intrs in the general intr mask
* register */
writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
temp64 = readq(&bar0->general_int_mask);
val64 |= temp64;
writeq(val64, &bar0->general_int_mask);
}
}
/* MAC Interrupts */
/* Enabling/Disabling MAC interrupts */
if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
val64 = TXMAC_INT_M | RXMAC_INT_M;
if (flag == ENABLE_INTRS) {
temp64 = readq(&bar0->general_int_mask);
temp64 &= ~((u64) val64);
writeq(temp64, &bar0->general_int_mask);
/* All MAC block error interrupts are disabled for now
* except the link status change interrupt.
* TODO*/
val64 = MAC_INT_STATUS_RMAC_INT;
temp64 = readq(&bar0->mac_int_mask);
temp64 &= ~((u64) val64);
writeq(temp64, &bar0->mac_int_mask);
val64 = readq(&bar0->mac_rmac_err_mask);
val64 &= ~((u64) RMAC_LINK_STATE_CHANGE_INT);
writeq(val64, &bar0->mac_rmac_err_mask);
} else if (flag == DISABLE_INTRS) {
/* Disable MAC Intrs in the general intr mask register
*/
writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
writeq(DISABLE_ALL_INTRS,
&bar0->mac_rmac_err_mask);
temp64 = readq(&bar0->general_int_mask);
val64 |= temp64;
writeq(val64, &bar0->general_int_mask);
}
}
/* XGXS Interrupts */
if (mask & (TX_XGXS_INTR | RX_XGXS_INTR)) {
val64 = TXXGXS_INT_M | RXXGXS_INT_M;
if (flag == ENABLE_INTRS) {
temp64 = readq(&bar0->general_int_mask);
temp64 &= ~((u64) val64);
writeq(temp64, &bar0->general_int_mask);
/* All XGXS block error interrupts are disabled for now
* TODO */
writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
} else if (flag == DISABLE_INTRS) {
/* Disable MC Intrs in the general intr mask register
*/
writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
temp64 = readq(&bar0->general_int_mask);
val64 |= temp64;
writeq(val64, &bar0->general_int_mask);
}
}
/* Memory Controller(MC) interrupts */
if (mask & MC_INTR) {
val64 = MC_INT_M;
if (flag == ENABLE_INTRS) {
temp64 = readq(&bar0->general_int_mask);
temp64 &= ~((u64) val64);
writeq(temp64, &bar0->general_int_mask);
/* All MC block error interrupts are disabled for now
* TODO */
writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask);
} else if (flag == DISABLE_INTRS) {
/* Disable MC Intrs in the general intr mask register
*/
writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask);
temp64 = readq(&bar0->general_int_mask);
val64 |= temp64;
writeq(val64, &bar0->general_int_mask);
}
}
/* Tx traffic interrupts */
if (mask & TX_TRAFFIC_INTR) {
val64 = TXTRAFFIC_INT_M;
if (flag == ENABLE_INTRS) {
temp64 = readq(&bar0->general_int_mask);
temp64 &= ~((u64) val64);
writeq(temp64, &bar0->general_int_mask);
/* Enable all the Tx side interrupts */
writeq(0x0, &bar0->tx_traffic_mask); /* '0' Enables
* all 64 TX
* interrupt
* levels.
*/
} else if (flag == DISABLE_INTRS) {
/* Disable Tx Traffic Intrs in the general intr mask
* register.
*/
writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
temp64 = readq(&bar0->general_int_mask);
val64 |= temp64;
writeq(val64, &bar0->general_int_mask);
}
}
/* Rx traffic interrupts */
if (mask & RX_TRAFFIC_INTR) {
val64 = RXTRAFFIC_INT_M;
if (flag == ENABLE_INTRS) {
temp64 = readq(&bar0->general_int_mask);
temp64 &= ~((u64) val64);
writeq(temp64, &bar0->general_int_mask);
writeq(0x0, &bar0->rx_traffic_mask); /* '0' Enables
* all 8 RX
* interrupt
* levels.
*/
} else if (flag == DISABLE_INTRS) {
/* Disable Rx Traffic Intrs in the general intr mask
* register.
*/
writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
temp64 = readq(&bar0->general_int_mask);
val64 |= temp64;
writeq(val64, &bar0->general_int_mask);
}
}
}
/*
* Input Arguments:
* val64 - Value read from adapter status register.
* flag - indicates if the adapter enable bit was ever written once before.
* Return Value:
* void.
* Description:
* Returns whether the H/W is ready to go or not. Depending on whether
* adapter enable bit was written or not the comparison differs and the
* calling function passes the input argument flag to indicate this.
*/
static int verify_xena_quiescence(u64 val64, int flag)
{
int ret = 0;
u64 tmp64 = ~((u64) val64);
if (!
(tmp64 &
(ADAPTER_STATUS_TDMA_READY | ADAPTER_STATUS_RDMA_READY |
ADAPTER_STATUS_PFC_READY | ADAPTER_STATUS_TMAC_BUF_EMPTY |
ADAPTER_STATUS_PIC_QUIESCENT | ADAPTER_STATUS_MC_DRAM_READY |
ADAPTER_STATUS_MC_QUEUES_READY | ADAPTER_STATUS_M_PLL_LOCK |
ADAPTER_STATUS_P_PLL_LOCK))) {
if (flag == FALSE) {
if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) &&
((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
ret = 1;
}
} else {
if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
ADAPTER_STATUS_RMAC_PCC_IDLE) &&
(!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
ret = 1;
}
}
}
return ret;
}
/*
* New procedure to clear mac address reading problems on Alpha platforms
*
*/
void FixMacAddress(nic_t * sp)
{
XENA_dev_config_t *bar0 = (XENA_dev_config_t *) sp->bar0;
u64 val64;
int i = 0;
while (fix_mac[i] != END_SIGN) {
writeq(fix_mac[i++], &bar0->gpio_control);
val64 = readq(&bar0->gpio_control);
}
}
/*
* Input Arguments:
* device private variable.
* Return Value:
* SUCCESS on success and -1 on failure.
* Description:
* This function actually turns the device on. Before this
* function is called, all Registers are configured from their reset states
* and shared memory is allocated but the NIC is still quiescent. On
* calling this function, the device interrupts are cleared and the NIC is
* literally switched on by writing into the adapter control register.
*/
static int startNic(struct s2io_nic *nic)
{
XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
struct net_device *dev = nic->dev;
register u64 val64 = 0;
u16 interruptible, i;
u16 subid;
mac_info_t *mac_control;
struct config_param *config;
mac_control = &nic->mac_control;
config = &nic->config;
/* PRC Initialization and configuration */
for (i = 0; i < config->RxRingNum; i++) {
writeq((u64) nic->rx_blocks[i][0].block_dma_addr,
&bar0->prc_rxd0_n[i]);
val64 = readq(&bar0->prc_ctrl_n[i]);
val64 |= PRC_CTRL_RC_ENABLED;
writeq(val64, &bar0->prc_ctrl_n[i]);
}
/* Enabling MC-RLDRAM. After enabling the device, we timeout
* for around 100ms, which is approximately the time required
* for the device to be ready for operation.
*/
val64 = readq(&bar0->mc_rldram_mrs);
val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
writeq(val64, &bar0->mc_rldram_mrs);
val64 = readq(&bar0->mc_rldram_mrs);
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(HZ / 10); /* Delay by around 100 ms. */
/* Enabling ECC Protection. */
val64 = readq(&bar0->adapter_control);
val64 &= ~ADAPTER_ECC_EN;
writeq(val64, &bar0->adapter_control);
/* Clearing any possible Link state change interrupts that
* could have popped up just before Enabling the card.
*/
val64 = readq(&bar0->mac_rmac_err_reg);
if (val64)
writeq(val64, &bar0->mac_rmac_err_reg);
/* Verify if the device is ready to be enabled, if so enable
* it.
*/
val64 = readq(&bar0->adapter_status);
if (!verify_xena_quiescence(val64, nic->device_enabled_once)) {
DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
(unsigned long long) val64);
return FAILURE;
}
/* Enable select interrupts */
interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR | TX_MAC_INTR |
RX_MAC_INTR;
en_dis_able_NicIntrs(nic, interruptible, ENABLE_INTRS);
/* With some switches, link might be already up at this point.
* Because of this weird behavior, when we enable laser,
* we may not get link. We need to handle this. We cannot
* figure out which switch is misbehaving. So we are forced to
* make a global change.
*/
/* Enabling Laser. */
val64 = readq(&bar0->adapter_control);
val64 |= ADAPTER_EOI_TX_ON;
writeq(val64, &bar0->adapter_control);
/* SXE-002: Initialize link and activity LED */
subid = nic->pdev->subsystem_device;
if ((subid & 0xFF) >= 0x07) {
val64 = readq(&bar0->gpio_control);
val64 |= 0x0000800000000000ULL;
writeq(val64, &bar0->gpio_control);
val64 = 0x0411040400000000ULL;
writeq(val64, (void *) ((u8 *) bar0 + 0x2700));
}
/*
* Here we are performing soft reset on XGXS to
* force link down. Since link is already up, we will get
* link state change interrupt after this reset
*/
writeq(0x8007051500000000ULL, &bar0->dtx_control);
val64 = readq(&bar0->dtx_control);
writeq(0x80070515000000E0ULL, &bar0->dtx_control);
val64 = readq(&bar0->dtx_control);
writeq(0x80070515001F00E4ULL, &bar0->dtx_control);
val64 = readq(&bar0->dtx_control);
return SUCCESS;
}
/*
* Input Arguments:
* nic - device private variable.
* Return Value:
* void.
* Description:
* Free all queued Tx buffers.
*/
void freeTxBuffers(struct s2io_nic *nic)
{
struct net_device *dev = nic->dev;
struct sk_buff *skb;
TxD_t *txdp;
int i, j;
#if DEBUG_ON
int cnt = 0;
#endif
mac_info_t *mac_control;
struct config_param *config;
mac_control = &nic->mac_control;
config = &nic->config;
for (i = 0; i < config->TxFIFONum; i++) {
for (j = 0; j < config->TxCfg[i].FifoLen - 1; j++) {
txdp = mac_control->txdl_start[i] +
(config->MaxTxDs * j);
if (!(txdp->Control_1 & TXD_LIST_OWN_XENA)) {
/* If owned by host, ignore */
continue;
}
skb =
(struct sk_buff *) ((unsigned long) txdp->
Host_Control);
if (skb == NULL) {
DBG_PRINT(ERR_DBG, "%s: NULL skb ",
dev->name);
DBG_PRINT(ERR_DBG, "in Tx Int\n");
return;
}
#if DEBUG_ON
cnt++;
#endif
dev_kfree_skb(skb);
memset(txdp, 0, sizeof(TxD_t));
}
#if DEBUG_ON
DBG_PRINT(INTR_DBG,
"%s:forcibly freeing %d skbs on FIFO%d\n",
dev->name, cnt, i);
#endif
}
}
/*
* Input Arguments:
* nic - device private variable.
* Return Value:
* void.
* Description:
* This function does exactly the opposite of what the startNic()
* function does. This function is called to stop
* the device.
*/
static void stopNic(struct s2io_nic *nic)
{
XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
register u64 val64 = 0;
u16 interruptible, i;
mac_info_t *mac_control;
struct config_param *config;
mac_control = &nic->mac_control;
config = &nic->config;
/* Disable all interrupts */
interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR | TX_MAC_INTR |
RX_MAC_INTR;
en_dis_able_NicIntrs(nic, interruptible, DISABLE_INTRS);
/* Disable PRCs */
for (i = 0; i < config->RxRingNum; i++) {
val64 = readq(&bar0->prc_ctrl_n[i]);
val64 &= ~((u64) PRC_CTRL_RC_ENABLED);
writeq(val64, &bar0->prc_ctrl_n[i]);
}
}
/*
* Input Arguments:
* device private variable
* Return Value:
* SUCCESS on success or an appropriate -ve value on failure.
* Description:
* The function allocates Rx side skbs and puts the physical
* address of these buffers into the RxD buffer pointers, so that the NIC
* can DMA the received frame into these locations.
* The NIC supports 3 receive modes, viz
* 1. single buffer,
* 2. three buffer and
* 3. Five buffer modes.
* Each mode defines how many fragments the received frame will be split
* up into by the NIC. The frame is split into L3 header, L4 Header,
* L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
* is split into 3 fragments. As of now only single buffer mode is supported.
*/
int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
{
struct net_device *dev = nic->dev;
struct sk_buff *skb;
RxD_t *rxdp;
int off, off1, size, block_no, block_no1;
int offset, offset1;
u32 alloc_tab = 0;
u32 alloc_cnt = nic->pkt_cnt[ring_no] -
atomic_read(&nic->rx_bufs_left[ring_no]);
mac_info_t *mac_control;
struct config_param *config;
mac_control = &nic->mac_control;
config = &nic->config;
if (frame_len[ring_no]) {
if (frame_len[ring_no] > dev->mtu)
dev->mtu = frame_len[ring_no];
size = frame_len[ring_no] + HEADER_ETHERNET_II_802_3_SIZE +
HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
} else {
size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
}
while (alloc_tab < alloc_cnt) {
block_no = mac_control->rx_curr_put_info[ring_no].
block_index;
block_no1 = mac_control->rx_curr_get_info[ring_no].
block_index;
off = mac_control->rx_curr_put_info[ring_no].offset;
off1 = mac_control->rx_curr_get_info[ring_no].offset;
offset = block_no * (MAX_RXDS_PER_BLOCK + 1) + off;
offset1 = block_no1 * (MAX_RXDS_PER_BLOCK + 1) + off1;
rxdp = nic->rx_blocks[ring_no][block_no].
block_virt_addr + off;
if ((offset == offset1) && (rxdp->Host_Control)) {
DBG_PRINT(INTR_DBG, "%s: Get and Put", dev->name);
DBG_PRINT(INTR_DBG, " info equated\n");
goto end;
}
if (rxdp->Control_1 == END_OF_BLOCK) {
mac_control->rx_curr_put_info[ring_no].
block_index++;
mac_control->rx_curr_put_info[ring_no].
block_index %= nic->block_count[ring_no];
block_no = mac_control->rx_curr_put_info
[ring_no].block_index;
off++;
off %= (MAX_RXDS_PER_BLOCK + 1);
mac_control->rx_curr_put_info[ring_no].offset =
off;
/*rxdp = nic->rx_blocks[ring_no][block_no].
block_virt_addr + off; */
rxdp = (RxD_t *) ((unsigned long) rxdp->Control_2);
DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
dev->name, rxdp);
}
if (rxdp->Control_1 & RXD_OWN_XENA) {
mac_control->rx_curr_put_info[ring_no].
offset = off;
goto end;
}
skb = dev_alloc_skb(size + NET_IP_ALIGN);
if (!skb) {
DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
return -ENOMEM;
}
skb_reserve(skb, NET_IP_ALIGN);
memset(rxdp, 0, sizeof(RxD_t));
rxdp->Buffer0_ptr = pci_map_single
(nic->pdev, skb->data, size, PCI_DMA_FROMDEVICE);
rxdp->Control_2 &= (~MASK_BUFFER0_SIZE);
rxdp->Control_2 |= SET_BUFFER0_SIZE(size);
rxdp->Host_Control = (unsigned long) (skb);
rxdp->Control_1 |= RXD_OWN_XENA;
off++;
off %= (MAX_RXDS_PER_BLOCK + 1);
mac_control->rx_curr_put_info[ring_no].offset = off;
atomic_inc(&nic->rx_bufs_left[ring_no]);
alloc_tab++;
}
end:
return SUCCESS;
}
/*
* Input Arguments:
* device private variable.
* Return Value:
* NONE.
* Description:
* This function will free all Rx buffers allocated by host.
*/
static void freeRxBuffers(struct s2io_nic *sp)
{
struct net_device *dev = sp->dev;
int i, j, blk = 0, off, buf_cnt = 0;
RxD_t *rxdp;
struct sk_buff *skb;
mac_info_t *mac_control;
struct config_param *config;
mac_control = &sp->mac_control;
config = &sp->config;
for (i = 0; i < config->RxRingNum; i++) {
for (j = 0, blk = 0; j < config->RxCfg[i].NumRxd; j++) {
off = j % (MAX_RXDS_PER_BLOCK + 1);
rxdp = sp->rx_blocks[i][blk].block_virt_addr + off;
if (rxdp->Control_1 == END_OF_BLOCK) {
rxdp =
(RxD_t *) ((unsigned long) rxdp->
Control_2);
j++;
blk++;
}
skb =
(struct sk_buff *) ((unsigned long) rxdp->
Host_Control);
if (skb) {
pci_unmap_single(sp->pdev, (dma_addr_t)
rxdp->Buffer0_ptr,
dev->mtu +
HEADER_ETHERNET_II_802_3_SIZE
+ HEADER_802_2_SIZE +
HEADER_SNAP_SIZE,
PCI_DMA_FROMDEVICE);
dev_kfree_skb(skb);
atomic_dec(&sp->rx_bufs_left[i]);
buf_cnt++;
}
memset(rxdp, 0, sizeof(RxD_t));
}
mac_control->rx_curr_put_info[i].block_index = 0;
mac_control->rx_curr_get_info[i].block_index = 0;
mac_control->rx_curr_put_info[i].offset = 0;
mac_control->rx_curr_get_info[i].offset = 0;
atomic_set(&sp->rx_bufs_left[i], 0);
DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
dev->name, buf_cnt, i);
}
}
/*
* Input Argument:
* dev - pointer to the device structure.
* budget - The number of packets that were budgeted to be processed during
* one pass through the 'Poll" function.
* Return value:
* 0 on success and 1 if there are No Rx packets to be processed.
* Description:
* Comes into picture only if NAPI support has been incorporated. It does
* the same thing that rxIntrHandler does, but not in a interrupt context
* also It will process only a given number of packets.
*/
#ifdef CONFIG_S2IO_NAPI
static int s2io_poll(struct net_device *dev, int *budget)
{
nic_t *nic = dev->priv;
XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
int pkts_to_process = *budget, pkt_cnt = 0;
register u64 val64 = 0;
rx_curr_get_info_t offset_info;
int i, block_no;
u16 val16, cksum;
struct sk_buff *skb;
RxD_t *rxdp;
mac_info_t *mac_control;
struct config_param *config;
mac_control = &nic->mac_control;
config = &nic->config;
if (pkts_to_process > dev->quota)
pkts_to_process = dev->quota;
val64 = readq(&bar0->rx_traffic_int);
writeq(val64, &bar0->rx_traffic_int);
for (i = 0; i < config->RxRingNum; i++) {
if (--pkts_to_process < 0) {
goto no_rx;
}
offset_info = mac_control->rx_curr_get_info[i];
block_no = offset_info.block_index;
rxdp = nic->rx_blocks[i][block_no].block_virt_addr +
offset_info.offset;
while (!(rxdp->Control_1 & RXD_OWN_XENA)) {
if (rxdp->Control_1 == END_OF_BLOCK) {
rxdp =
(RxD_t *) ((unsigned long) rxdp->
Control_2);
offset_info.offset++;
offset_info.offset %=
(MAX_RXDS_PER_BLOCK + 1);
block_no++;
block_no %= nic->block_count[i];
mac_control->rx_curr_get_info[i].
offset = offset_info.offset;
mac_control->rx_curr_get_info[i].
block_index = block_no;
continue;
}
skb =
(struct sk_buff *) ((unsigned long) rxdp->
Host_Control);
if (skb == NULL) {
DBG_PRINT(ERR_DBG, "%s: The skb is ",
dev->name);
DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
return 0;
}
val64 = RXD_GET_BUFFER0_SIZE(rxdp->Control_2);
val16 = (u16) (val64 >> 48);
cksum = RXD_GET_L4_CKSUM(rxdp->Control_1);
pci_unmap_single(nic->pdev, (dma_addr_t)
rxdp->Buffer0_ptr,
dev->mtu +
HEADER_ETHERNET_II_802_3_SIZE +
HEADER_802_2_SIZE +
HEADER_SNAP_SIZE,
PCI_DMA_FROMDEVICE);
rxOsmHandler(nic, val16, rxdp, i);
pkt_cnt++;
offset_info.offset++;
offset_info.offset %= (MAX_RXDS_PER_BLOCK + 1);
rxdp =
nic->rx_blocks[i][block_no].block_virt_addr +
offset_info.offset;
mac_control->rx_curr_get_info[i].offset =
offset_info.offset;
}
}
if (!pkt_cnt)
pkt_cnt = 1;
for (i = 0; i < config->RxRingNum; i++)
fill_rx_buffers(nic, i);
dev->quota -= pkt_cnt;
*budget -= pkt_cnt;
netif_rx_complete(dev);
/* Re enable the Rx interrupts. */
en_dis_able_NicIntrs(nic, RX_TRAFFIC_INTR, ENABLE_INTRS);
return 0;
no_rx:
for (i = 0; i < config->RxRingNum; i++)
fill_rx_buffers(nic, i);
dev->quota -= pkt_cnt;
*budget -= pkt_cnt;
return 1;
}
#else
/*
* Input Arguments:
* device private variable.
* Return Value:
* NONE.
* Description:
* If the interrupt is because of a received frame or if the
* receive ring contains fresh as yet un-processed frames, this function is
* called. It picks out the RxD at which place the last Rx processing had
* stopped and sends the skb to the OSM's Rx handler and then increments
* the offset.
*/
static void rxIntrHandler(struct s2io_nic *nic)
{
struct net_device *dev = (struct net_device *) nic->dev;
XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
rx_curr_get_info_t offset_info;
RxD_t *rxdp;
struct sk_buff *skb;
u16 val16, cksum;
register u64 val64 = 0;
int i, block_no;
mac_info_t *mac_control;
struct config_param *config;
mac_control = &nic->mac_control;
config = &nic->config;
#if DEBUG_ON
nic->rxint_cnt++;
#endif
/* rx_traffic_int reg is an R1 register, hence we read and write back
* the samevalue in the register to clear it.
*/
val64 = readq(&bar0->rx_traffic_int);
writeq(val64, &bar0->rx_traffic_int);
for (i = 0; i < config->RxRingNum; i++) {
offset_info = mac_control->rx_curr_get_info[i];
block_no = offset_info.block_index;
rxdp = nic->rx_blocks[i][block_no].block_virt_addr +
offset_info.offset;
while (!(rxdp->Control_1 & RXD_OWN_XENA)) {
if (rxdp->Control_1 == END_OF_BLOCK) {
rxdp = (RxD_t *) ((unsigned long)
rxdp->Control_2);
offset_info.offset++;
offset_info.offset %=
(MAX_RXDS_PER_BLOCK + 1);
block_no++;
block_no %= nic->block_count[i];
mac_control->rx_curr_get_info[i].
offset = offset_info.offset;
mac_control->rx_curr_get_info[i].
block_index = block_no;
continue;
}
skb = (struct sk_buff *) ((unsigned long)
rxdp->Host_Control);
if (skb == NULL) {
DBG_PRINT(ERR_DBG, "%s: The skb is ",
dev->name);
DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
return;
}
val64 = RXD_GET_BUFFER0_SIZE(rxdp->Control_2);
val16 = (u16) (val64 >> 48);
cksum = RXD_GET_L4_CKSUM(rxdp->Control_1);
pci_unmap_single(nic->pdev, (dma_addr_t)
rxdp->Buffer0_ptr,
dev->mtu +
HEADER_ETHERNET_II_802_3_SIZE +
HEADER_802_2_SIZE +
HEADER_SNAP_SIZE,
PCI_DMA_FROMDEVICE);
rxOsmHandler(nic, val16, rxdp, i);
offset_info.offset++;
offset_info.offset %= (MAX_RXDS_PER_BLOCK + 1);
rxdp =
nic->rx_blocks[i][block_no].block_virt_addr +
offset_info.offset;
mac_control->rx_curr_get_info[i].offset =
offset_info.offset;
}
}
}
#endif
/*
* Input Arguments:
* device private variable
* Return Value:
* NONE
* Description:
* If an interrupt was raised to indicate DMA complete of the
* Tx packet, this function is called. It identifies the last TxD whose buffer
* was freed and frees all skbs whose data have already DMA'ed into the NICs
* internal memory.
*/
static void txIntrHandler(struct s2io_nic *nic)
{
XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
struct net_device *dev = (struct net_device *) nic->dev;
tx_curr_get_info_t offset_info, offset_info1;
struct sk_buff *skb;
TxD_t *txdlp;
register u64 val64 = 0;
int i;
u16 j, frg_cnt;
mac_info_t *mac_control;
struct config_param *config;
#if DEBUG_ON
int cnt = 0;
nic->txint_cnt++;
#endif
mac_control = &nic->mac_control;
config = &nic->config;
/* tx_traffic_int reg is an R1 register, hence we read and write
* back the samevalue in the register to clear it.
*/
val64 = readq(&bar0->tx_traffic_int);
writeq(val64, &bar0->tx_traffic_int);
for (i = 0; i < config->TxFIFONum; i++) {
offset_info = mac_control->tx_curr_get_info[i];
offset_info1 = mac_control->tx_curr_put_info[i];
txdlp = mac_control->txdl_start[i] +
(config->MaxTxDs * offset_info.offset);
while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
(offset_info.offset != offset_info1.offset) &&
(txdlp->Host_Control)) {
/* Check for TxD errors */
if (txdlp->Control_1 & TXD_T_CODE) {
unsigned long long err;
err = txdlp->Control_1 & TXD_T_CODE;
DBG_PRINT(ERR_DBG, "***TxD error %llx\n",
err);
}
skb = (struct sk_buff *) ((unsigned long)
txdlp->Host_Control);
if (skb == NULL) {
DBG_PRINT(ERR_DBG, "%s: Null skb ",
dev->name);
DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
return;
}
nic->tx_pkt_count++;
frg_cnt = skb_shinfo(skb)->nr_frags;
/* For unfragmented skb */
pci_unmap_single(nic->pdev, (dma_addr_t)
txdlp->Buffer_Pointer,
skb->len - skb->data_len,
PCI_DMA_TODEVICE);
if (frg_cnt) {
TxD_t *temp = txdlp;
txdlp++;
for (j = 0; j < frg_cnt; j++, txdlp++) {
skb_frag_t *frag =
&skb_shinfo(skb)->frags[j];
pci_unmap_page(nic->pdev,
(dma_addr_t)
txdlp->
Buffer_Pointer,
frag->size,
PCI_DMA_TODEVICE);
}
txdlp = temp;
}
memset(txdlp, 0,
(sizeof(TxD_t) * config->MaxTxDs));
/* Updating the statistics block */
nic->stats.tx_packets++;
nic->stats.tx_bytes += skb->len;
#if DEBUG_ON
nic->txpkt_bytes += skb->len;
cnt++;
#endif
dev_kfree_skb_irq(skb);
offset_info.offset++;
offset_info.offset %= offset_info.fifo_len + 1;
txdlp = mac_control->txdl_start[i] +
(config->MaxTxDs * offset_info.offset);
mac_control->tx_curr_get_info[i].offset =
offset_info.offset;
}
#if DEBUG_ON
DBG_PRINT(INTR_DBG, "%s: freed %d Tx Pkts\n", dev->name,
cnt);
#endif
}
spin_lock(&nic->tx_lock);
if (netif_queue_stopped(dev))
netif_wake_queue(dev);
spin_unlock(&nic->tx_lock);
}
/*
* Input Arguments:
* device private variable
* Return Value:
* NONE
* Description:
* If the interrupt was neither because of Rx packet or Tx
* complete, this function is called. If the interrupt was to indicate a loss
* of link, the OSM link status handler is invoked for any other alarm
* interrupt the block that raised the interrupt is displayed and a H/W reset
* is issued.
*/
static void alarmIntrHandler(struct s2io_nic *nic)
{
struct net_device *dev = (struct net_device *) nic->dev;
XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
register u64 val64 = 0, err_reg = 0;
/* Handling link status change error Intr */
err_reg = readq(&bar0->mac_rmac_err_reg);
if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
schedule_work(&nic->set_link_task);
}
/* Handling SERR errors by stopping device Xmit queue and forcing
* a H/W reset.
*/
val64 = readq(&bar0->serr_source);
if (val64 & SERR_SOURCE_ANY) {
DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
DBG_PRINT(ERR_DBG, "serious error!!\n");
netif_stop_queue(dev);
}
/* Other type of interrupts are not being handled now, TODO*/
}
/*
* Input Argument:
* sp - private member of the device structure, which is a pointer to the
* s2io_nic structure.
* Return value:
* SUCCESS on success and FAILURE on failure.
* Description:
* Function that waits for a command to Write into RMAC ADDR DATA registers
* to be completed and returns either success or error depending on whether
* the command was complete or not.
*/
int waitForCmdComplete(nic_t * sp)
{
XENA_dev_config_t *bar0 = (XENA_dev_config_t *) sp->bar0;
int ret = FAILURE, cnt = 0;
u64 val64;
while (TRUE) {
val64 =
RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
| RMAC_ADDR_CMD_MEM_OFFSET(0);
writeq(val64, &bar0->rmac_addr_cmd_mem);
val64 = readq(&bar0->rmac_addr_cmd_mem);
if (!val64) {
ret = SUCCESS;
break;
}
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(HZ / 20);
if (cnt++ > 10)
break;
}
return ret;
}
/*
* Input Argument:
* sp - private member of the device structure, which is a pointer to the
* s2io_nic structure.
* Return value:
* void.
* Description:
* Function to Reset the card. This function then also restores the previously
* saved PCI configuration space registers as the card reset also resets the
* Configration space.
*/
void s2io_reset(nic_t * sp)
{
XENA_dev_config_t *bar0 = (XENA_dev_config_t *) sp->bar0;
u64 val64;
u16 subid;
val64 = SW_RESET_ALL;
writeq(val64, &bar0->sw_reset);
/* At this stage, if the PCI write is indeed completed, the
* card is reset and so is the PCI Config space of the device.
* So a read cannot be issued at this stage on any of the
* registers to ensure the write into "sw_reset" register
* has gone through.
* Question: Is there any system call that will explicitly force
* all the write commands still pending on the bus to be pushed
* through?
* As of now I'am just giving a 250ms delay and hoping that the
* PCI write to sw_reset register is done by this time.
*/
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(HZ / 4);
/* Restore the PCI state saved during initializarion. */
pci_restore_state(sp->pdev);
s2io_init_pci(sp);
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(HZ / 4);
/* SXE-002: Configure link and activity LED to turn it off */
subid = sp->pdev->subsystem_device;
if ((subid & 0xFF) >= 0x07) {
val64 = readq(&bar0->gpio_control);
val64 |= 0x0000800000000000ULL;
writeq(val64, &bar0->gpio_control);
val64 = 0x0411040400000000ULL;
writeq(val64, (void *) ((u8 *) bar0 + 0x2700));
}
sp->device_enabled_once = FALSE;
}
/*
* Input Argument:
* sp - private member of the device structure, which is a pointer to the
* s2io_nic structure.
* Return value:
* SUCCESS on success and FAILURE on failure.
* Description:
* Function to set the swapper control on the card correctly depending on the
* 'endianness' of the system.
*/
int s2io_set_swapper(nic_t * sp)
{
struct net_device *dev = sp->dev;
XENA_dev_config_t *bar0 = (XENA_dev_config_t *) sp->bar0;
u64 val64;
/* Set proper endian settings and verify the same by reading the PIF
* Feed-back register.
*/
#ifdef __BIG_ENDIAN
/* The device by default set to a big endian format, so a big endian
* driver need not set anything.
*/
writeq(0xffffffffffffffffULL, &bar0->swapper_ctrl);
val64 = (SWAPPER_CTRL_PIF_R_FE |
SWAPPER_CTRL_PIF_R_SE |
SWAPPER_CTRL_PIF_W_FE |
SWAPPER_CTRL_PIF_W_SE |
SWAPPER_CTRL_TXP_FE |
SWAPPER_CTRL_TXP_SE |
SWAPPER_CTRL_TXD_R_FE |
SWAPPER_CTRL_TXD_W_FE |
SWAPPER_CTRL_TXF_R_FE |
SWAPPER_CTRL_RXD_R_FE |
SWAPPER_CTRL_RXD_W_FE |
SWAPPER_CTRL_RXF_W_FE |
SWAPPER_CTRL_XMSI_FE |
SWAPPER_CTRL_XMSI_SE |
SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
writeq(val64, &bar0->swapper_ctrl);
#else
/* Initially we enable all bits to make it accessible by the driver,
* then we selectively enable only those bits that we want to set.
*/
writeq(0xffffffffffffffffULL, &bar0->swapper_ctrl);
val64 = (SWAPPER_CTRL_PIF_R_FE |
SWAPPER_CTRL_PIF_R_SE |
SWAPPER_CTRL_PIF_W_FE |
SWAPPER_CTRL_PIF_W_SE |
SWAPPER_CTRL_TXP_FE |
SWAPPER_CTRL_TXP_SE |
SWAPPER_CTRL_TXD_R_FE |
SWAPPER_CTRL_TXD_R_SE |
SWAPPER_CTRL_TXD_W_FE |
SWAPPER_CTRL_TXD_W_SE |
SWAPPER_CTRL_TXF_R_FE |
SWAPPER_CTRL_RXD_R_FE |
SWAPPER_CTRL_RXD_R_SE |
SWAPPER_CTRL_RXD_W_FE |
SWAPPER_CTRL_RXD_W_SE |
SWAPPER_CTRL_RXF_W_FE |
SWAPPER_CTRL_XMSI_FE |
SWAPPER_CTRL_XMSI_SE |
SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
writeq(val64, &bar0->swapper_ctrl);
#endif
/* Verifying if endian settings are accurate by reading a feedback
* register.
*/
val64 = readq(&bar0->pif_rd_swapper_fb);
if (val64 != 0x0123456789ABCDEFULL) {
/* Endian settings are incorrect, calls for another dekko. */
DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
dev->name);
DBG_PRINT(ERR_DBG, "feedback read %llx\n",
(unsigned long long) val64);
return FAILURE;
}
return SUCCESS;
}
/* ********************************************************* *
* Functions defined below concern the OS part of the driver *
* ********************************************************* */
/*
* Input Argument:
* dev - pointer to the device structure.
* Return value:
* '0' on success and an appropriate (-)ve integer as defined in errno.h
* file on failure.
* Description:
* This function is the open entry point of the driver. It mainly calls a
* function to allocate Rx buffers and inserts them into the buffer
* descriptors and then enables the Rx part of the NIC.
*/
int s2io_open(struct net_device *dev)
{
nic_t *sp = dev->priv;
int i, ret = 0, err = 0;
mac_info_t *mac_control;
struct config_param *config;
/* Make sure you have link off by default every time Nic is initialized*/
netif_carrier_off(dev);
sp->last_link_state = LINK_DOWN;
/* Initialize the H/W I/O registers */
if (initNic(sp) != 0) {
DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
dev->name);
return -ENODEV;
}
/* After proper initialization of H/W, register ISR */
err =
request_irq((int) sp->irq, s2io_isr, SA_SHIRQ, sp->name, dev);
if (err) {
s2io_reset(sp);
DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
dev->name);
return err;
}
if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
s2io_reset(sp);
return -ENODEV;
}
/* Setting its receive mode */
s2io_set_multicast(dev);
/* Initializing the Rx buffers. For now we are considering only 1 Rx ring
* and initializing buffers into 1016 RxDs or 8 Rx blocks
*/
mac_control = &sp->mac_control;
config = &sp->config;
for (i = 0; i < config->RxRingNum; i++) {
if ((ret = fill_rx_buffers(sp, i))) {
DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
dev->name);
s2io_reset(sp);
free_irq(dev->irq, dev);
freeRxBuffers(sp);
return -ENOMEM;
}
DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
atomic_read(&sp->rx_bufs_left[i]));
}
/* Enable tasklet for the device */
tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
/* Enable Rx Traffic and interrupts on the NIC */
if (startNic(sp)) {
DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
tasklet_kill(&sp->task);
s2io_reset(sp);
free_irq(dev->irq, dev);
freeRxBuffers(sp);
return -ENODEV;
}
sp->device_close_flag = FALSE; /* Device is up and running. */
netif_start_queue(dev);
return 0;
}
/*
* Input Argument/s:
* dev - device pointer.
* Return value:
* '0' on success and an appropriate (-)ve integer as defined in errno.h
* file on failure.
* Description:
* This is the stop entry point of the driver. It needs to undo exactly
* whatever was done by the open entry point, thus it's usually referred to
* as the close function. Among other things this function mainly stops the
* Rx side of the NIC and frees all the Rx buffers in the Rx rings.
*/
int s2io_close(struct net_device *dev)
{
nic_t *sp = dev->priv;
XENA_dev_config_t *bar0 = (XENA_dev_config_t *) sp->bar0;
register u64 val64 = 0;
u16 cnt = 0;
spin_lock(&sp->isr_lock);
netif_stop_queue(dev);
/* disable Tx and Rx traffic on the NIC */
stopNic(sp);
spin_unlock(&sp->isr_lock);
/* If the device tasklet is running, wait till its done before killing it */
while (atomic_read(&(sp->tasklet_status))) {
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(HZ / 10);
}
tasklet_kill(&sp->task);
/* Check if the device is Quiescent and then Reset the NIC */
do {
val64 = readq(&bar0->adapter_status);
if (verify_xena_quiescence(val64, sp->device_enabled_once)) {
break;
}
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(HZ / 20);
cnt++;
if (cnt == 10) {
DBG_PRINT(ERR_DBG,
"s2io_close:Device not Quiescent ");
DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
(unsigned long long) val64);
break;
}
} while (1);
s2io_reset(sp);
/* Free the Registered IRQ */
free_irq(dev->irq, dev);
/* Free all Tx Buffers waiting for transmission */
freeTxBuffers(sp);
/* Free all Rx buffers allocated by host */
freeRxBuffers(sp);
sp->device_close_flag = TRUE; /* Device is shut down. */
return 0;
}
/*
* Input Argument/s:
* skb - the socket buffer containing the Tx data.
* dev - device pointer.
* Return value:
* '0' on success & 1 on failure.
* NOTE: when device cant queue the pkt, just the trans_start variable will
* not be upadted.
* Description:
* This function is the Tx entry point of the driver. S2IO NIC supports
* certain protocol assist features on Tx side, namely CSO, S/G, LSO.
*/
int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
{
nic_t *sp = dev->priv;
u16 off, txd_len, frg_cnt, frg_len, i, queue, off1, queue_len;
register u64 val64;
TxD_t *txdp;
TxFIFO_element_t *tx_fifo;
unsigned long flags;
#ifdef NETIF_F_TSO
int mss;
#endif
mac_info_t *mac_control;
struct config_param *config;
mac_control = &sp->mac_control;
config = &sp->config;
DBG_PRINT(TX_DBG, "%s: In S2IO Tx routine\n", dev->name);
spin_lock_irqsave(&sp->tx_lock, flags);
queue = 0;
/* Multi FIFO Tx is disabled for now. */
if (!queue && tx_prio) {
u8 x = (skb->data)[5];
queue = x % config->TxFIFONum;
}
off = (u16) mac_control->tx_curr_put_info[queue].offset;
off1 = (u16) mac_control->tx_curr_get_info[queue].offset;
txd_len = mac_control->txdl_len;
txdp = mac_control->txdl_start[queue] + (config->MaxTxDs * off);
queue_len = mac_control->tx_curr_put_info[queue].fifo_len + 1;
/* Avoid "put" pointer going beyond "get" pointer */
if (txdp->Host_Control || (((off + 1) % queue_len) == off1)) {
DBG_PRINT(ERR_DBG, "Error in xmit, No free TXDs.\n");
netif_stop_queue(dev);
dev_kfree_skb(skb);
spin_unlock_irqrestore(&sp->tx_lock, flags);
return 0;
}
#ifdef NETIF_F_TSO
mss = skb_shinfo(skb)->tso_size;
if (mss) {
txdp->Control_1 |= TXD_TCP_LSO_EN;
txdp->Control_1 |= TXD_TCP_LSO_MSS(mss);
}
#endif
frg_cnt = skb_shinfo(skb)->nr_frags;
frg_len = skb->len - skb->data_len;
txdp->Host_Control = (unsigned long) skb;
txdp->Buffer_Pointer = pci_map_single
(sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
if (skb->ip_summed == CHECKSUM_HW) {
txdp->Control_2 |=
(TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
TXD_TX_CKO_UDP_EN);
}
txdp->Control_2 |= config->TxIntrType;
txdp->Control_1 |= (TXD_BUFFER0_SIZE(frg_len) |
TXD_GATHER_CODE_FIRST);
txdp->Control_1 |= TXD_LIST_OWN_XENA;
/* For fragmented SKB. */
for (i = 0; i < frg_cnt; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
txdp++;
txdp->Buffer_Pointer = (u64) pci_map_page
(sp->pdev, frag->page, frag->page_offset,
frag->size, PCI_DMA_TODEVICE);
txdp->Control_1 |= TXD_BUFFER0_SIZE(frag->size);
}
txdp->Control_1 |= TXD_GATHER_CODE_LAST;
tx_fifo = mac_control->tx_FIFO_start[queue];
val64 = (mac_control->txdl_start_phy[queue] +
(sizeof(TxD_t) * txd_len * off));
writeq(val64, &tx_fifo->TxDL_Pointer);
val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
TX_FIFO_LAST_LIST);
#ifdef NETIF_F_TSO
if (mss)
val64 |= TX_FIFO_SPECIAL_FUNC;
#endif
writeq(val64, &tx_fifo->List_Control);
off++;
off %= mac_control->tx_curr_put_info[queue].fifo_len + 1;
mac_control->tx_curr_put_info[queue].offset = off;
/* Avoid "put" pointer going beyond "get" pointer */
if (((off + 1) % queue_len) == off1) {
DBG_PRINT(TX_DBG,
"No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
off, off1);
netif_stop_queue(dev);
}
dev->trans_start = jiffies;
spin_unlock_irqrestore(&sp->tx_lock, flags);
return 0;
}
/*
* Input Argument/s:
* irq: the irq of the device.
* dev_id: a void pointer to the dev structure of the NIC.
* ptregs: pointer to the registers pushed on the stack.
* Return value:
* void.
* Description:
* This function is the ISR handler of the device. It identifies the reason
* for the interrupt and calls the relevant service routines.
* As a contongency measure, this ISR allocates the recv buffers, if their
* numbers are below the panic value which is presently set to 25% of the
* original number of rcv buffers allocated.
*/
static irqreturn_t s2io_isr(int irq, void *dev_id, struct pt_regs *regs)
{
struct net_device *dev = (struct net_device *) dev_id;
nic_t *sp = dev->priv;
XENA_dev_config_t *bar0 = (XENA_dev_config_t *) sp->bar0;
u64 reason = 0, general_mask = 0;
mac_info_t *mac_control;
struct config_param *config;
mac_control = &sp->mac_control;
config = &sp->config;
spin_lock(&sp->isr_lock);
/* Identify the cause for interrupt and call the appropriate
* interrupt handler. Causes for the interrupt could be;
* 1. Rx of packet.
* 2. Tx complete.
* 3. Link down.
* 4. Error in any functional blocks of the NIC.
*/
reason = readq(&bar0->general_int_status);
if (!reason) {
/* The interrupt was not raised by Xena. */
spin_unlock(&sp->isr_lock);
return IRQ_NONE;
}
/* Mask the interrupts on the NIC */
general_mask = readq(&bar0->general_int_mask);
writeq(0xFFFFFFFFFFFFFFFFULL, &bar0->general_int_mask);
#if DEBUG_ON
sp->int_cnt++;
#endif
/* If Intr is because of Tx Traffic */
if (reason & GEN_INTR_TXTRAFFIC) {
txIntrHandler(sp);
}
/* If Intr is because of an error */
if (reason & (GEN_ERROR_INTR))
alarmIntrHandler(sp);
#ifdef CONFIG_S2IO_NAPI
if (reason & GEN_INTR_RXTRAFFIC) {
if (netif_rx_schedule_prep(dev)) {
en_dis_able_NicIntrs(sp, RX_TRAFFIC_INTR,
DISABLE_INTRS);
/* We retake the snap shot of the general interrupt
* register.
*/
general_mask = readq(&bar0->general_int_mask);
__netif_rx_schedule(dev);
}
}
#else
/* If Intr is because of Rx Traffic */
if (reason & GEN_INTR_RXTRAFFIC) {
rxIntrHandler(sp);
}
#endif
/* If the Rx buffer count is below the panic threshold then reallocate the
* buffers from the interrupt handler itself, else schedule a tasklet to
* reallocate the buffers.
*/
#if 1
{
int i;
for (i = 0; i < config->RxRingNum; i++) {
int rxb_size = atomic_read(&sp->rx_bufs_left[i]);
int level = rx_buffer_level(sp, rxb_size, i);
if ((level == PANIC) && (!TASKLET_IN_USE)) {
int ret;
DBG_PRINT(ERR_DBG, "%s: Rx BD hit ", dev->name);
DBG_PRINT(ERR_DBG, "PANIC levels\n");
if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) {
DBG_PRINT(ERR_DBG, "%s:Out of memory",
dev->name);
DBG_PRINT(ERR_DBG, " in ISR!!\n");
writeq(general_mask,
&bar0->general_int_mask);
spin_unlock(&sp->isr_lock);
return IRQ_HANDLED;
}
clear_bit(0,
(unsigned long *) (&sp->tasklet_status));
} else if ((level == LOW)
&& (!atomic_read(&sp->tasklet_status))) {
tasklet_schedule(&sp->task);
}
}
}
#else
tasklet_schedule(&sp->task);
#endif
/* Unmask all the previously enabled interrupts on the NIC */
writeq(general_mask, &bar0->general_int_mask);
spin_unlock(&sp->isr_lock);
return IRQ_HANDLED;
}
/*
* Input Argument/s:
* dev - pointer to the device structure.
* Return value:
* pointer to the updated net_device_stats structure.
* Description:
* This function updates the device statistics structure in the s2io_nic
* structure and returns a pointer to the same.
*/
struct net_device_stats *s2io_get_stats(struct net_device *dev)
{
nic_t *sp = dev->priv;
mac_info_t *mac_control;
struct config_param *config;
mac_control = &sp->mac_control;
config = &sp->config;
sp->stats.tx_errors = mac_control->StatsInfo->tmac_any_err_frms;
sp->stats.rx_errors = mac_control->StatsInfo->rmac_drop_frms;
sp->stats.multicast = mac_control->StatsInfo->rmac_vld_mcst_frms;
sp->stats.rx_length_errors =
mac_control->StatsInfo->rmac_long_frms;
return (&sp->stats);
}
/*
* Input Argument/s:
* dev - pointer to the device structure
* Return value:
* void.
* Description:
* This function is a driver entry point which gets called by the kernel
* whenever multicast addresses must be enabled/disabled. This also gets
* called to set/reset promiscuous mode. Depending on the deivce flag, we
* determine, if multicast address must be enabled or if promiscuous mode
* is to be disabled etc.
*/
static void s2io_set_multicast(struct net_device *dev)
{
int i, j, prev_cnt;
struct dev_mc_list *mclist;
nic_t *sp = dev->priv;
XENA_dev_config_t *bar0 = (XENA_dev_config_t *) sp->bar0;
u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
0xfeffffffffffULL;
u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
void *add;
if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
/* Enable all Multicast addresses */
writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
&bar0->rmac_addr_data0_mem);
writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
&bar0->rmac_addr_data1_mem);
val64 = RMAC_ADDR_CMD_MEM_WE |
RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
writeq(val64, &bar0->rmac_addr_cmd_mem);
/* Wait till command completes */
waitForCmdComplete(sp);
sp->m_cast_flg = 1;
sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
} else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
/* Disable all Multicast addresses */
writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
&bar0->rmac_addr_data0_mem);
val64 = RMAC_ADDR_CMD_MEM_WE |
RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
writeq(val64, &bar0->rmac_addr_cmd_mem);
/* Wait till command completes */
waitForCmdComplete(sp);
sp->m_cast_flg = 0;
sp->all_multi_pos = 0;
}
if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
/* Put the NIC into promiscuous mode */
add = (void *) &bar0->mac_cfg;
val64 = readq(&bar0->mac_cfg);
val64 |= MAC_CFG_RMAC_PROM_ENABLE;
writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
writel((u32) val64, add);
writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
writel((u32) (val64 >> 32), (add + 4));
val64 = readq(&bar0->mac_cfg);
sp->promisc_flg = 1;
DBG_PRINT(ERR_DBG, "%s: entered promiscuous mode\n",
dev->name);
} else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
/* Remove the NIC from promiscuous mode */
add = (void *) &bar0->mac_cfg;
val64 = readq(&bar0->mac_cfg);
val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
writel((u32) val64, add);
writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
writel((u32) (val64 >> 32), (add + 4));
val64 = readq(&bar0->mac_cfg);
sp->promisc_flg = 0;
DBG_PRINT(ERR_DBG, "%s: left promiscuous mode\n",
dev->name);
}
/* Update individual M_CAST address list */
if ((!sp->m_cast_flg) && dev->mc_count) {
if (dev->mc_count >
(MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
dev->name);
DBG_PRINT(ERR_DBG, "can be added, please enable ");
DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
return;
}
prev_cnt = sp->mc_addr_count;
sp->mc_addr_count = dev->mc_count;
/* Clear out the previous list of Mc in the H/W. */
for (i = 0; i < prev_cnt; i++) {
writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
&bar0->rmac_addr_data0_mem);
val64 = RMAC_ADDR_CMD_MEM_WE |
RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
RMAC_ADDR_CMD_MEM_OFFSET
(MAC_MC_ADDR_START_OFFSET + i);
writeq(val64, &bar0->rmac_addr_cmd_mem);
/* Wait for command completes */
if (waitForCmdComplete(sp)) {
DBG_PRINT(ERR_DBG, "%s: Adding ",
dev->name);
DBG_PRINT(ERR_DBG, "Multicasts failed\n");
return;
}
}
/* Create the new Rx filter list and update the same in H/W. */
for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
i++, mclist = mclist->next) {
memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
ETH_ALEN);
for (j = 0; j < ETH_ALEN; j++) {
mac_addr |= mclist->dmi_addr[j];
mac_addr <<= 8;
}
writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
&bar0->rmac_addr_data0_mem);
val64 = RMAC_ADDR_CMD_MEM_WE |
RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
RMAC_ADDR_CMD_MEM_OFFSET
(i + MAC_MC_ADDR_START_OFFSET);
writeq(val64, &bar0->rmac_addr_cmd_mem);
/* Wait for command completes */
if (waitForCmdComplete(sp)) {
DBG_PRINT(ERR_DBG, "%s: Adding ",
dev->name);
DBG_PRINT(ERR_DBG, "Multicasts failed\n");
return;
}
}
}
}
/*
* Input Argument/s:
* dev - pointer to the device structure.
* new_mac - a uchar pointer to the new mac address which is to be set.
* Return value:
* SUCCESS on success and an appropriate (-)ve integer as defined in errno.h
* file on failure.
* Description:
* This procedure will program the Xframe to receive frames with new
* Mac Address
*/
int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
{
nic_t *sp = dev->priv;
XENA_dev_config_t *bar0 = (XENA_dev_config_t *) sp->bar0;
register u64 val64, mac_addr = 0;
int i;
/*
* Set the new MAC address as the new unicast filter and reflect this
* change on the device address registered with the OS. It will be
* at offset 0.
*/
for (i = 0; i < ETH_ALEN; i++) {
mac_addr <<= 8;
mac_addr |= addr[i];
}
writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
&bar0->rmac_addr_data0_mem);
val64 =
RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
RMAC_ADDR_CMD_MEM_OFFSET(0);
writeq(val64, &bar0->rmac_addr_cmd_mem);
/* Wait till command completes */
if (waitForCmdComplete(sp)) {
DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
return FAILURE;
}
return SUCCESS;
}
/*
* Input Argument/s:
* sp - private member of the device structure, which is a pointer to the
* s2io_nic structure.
* info - pointer to the structure with parameters given by ethtool to set
* link information.
* Return value:
* 0 on success.
* Description:
* The function sets different link parameters provided by the user onto
* the NIC.
*/
static int s2io_ethtool_sset(struct net_device *dev,
struct ethtool_cmd *info)
{
nic_t *sp = dev->priv;
if ((info->autoneg == AUTONEG_ENABLE) ||
(info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
return -EINVAL;
else {
s2io_close(sp->dev);
s2io_open(sp->dev);
}
return 0;
}
/*
* Input Argument/s:
* sp - private member of the device structure, which is a pointer to the
* s2io_nic structure.
* info - pointer to the structure with parameters given by ethtool to return
* link information.
* Return value:
* void
* Description:
* Returns link specefic information like speed, duplex etc.. to ethtool.
*/
int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
{
nic_t *sp = dev->priv;
info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
info->port = PORT_FIBRE;
/* info->transceiver?? TODO */
if (netif_carrier_ok(sp->dev)) {
info->speed = 10000;
info->duplex = DUPLEX_FULL;
} else {
info->speed = -1;
info->duplex = -1;
}
info->autoneg = AUTONEG_DISABLE;
return 0;
}
/*
* Input Argument/s:
* sp - private member of the device structure, which is a pointer to the
* s2io_nic structure.
* info - pointer to the structure with parameters given by ethtool to return
* driver information.
* Return value:
* void
* Description:
* Returns driver specefic information like name, version etc.. to ethtool.
*/
static void s2io_ethtool_gdrvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
nic_t *sp = dev->priv;
strncpy(info->driver, s2io_driver_name, sizeof(s2io_driver_name));
strncpy(info->version, s2io_driver_version,
sizeof(s2io_driver_version));
strncpy(info->fw_version, "", 32);
strncpy(info->bus_info, sp->pdev->slot_name, 32);
info->regdump_len = XENA_REG_SPACE;
info->eedump_len = XENA_EEPROM_SPACE;
info->testinfo_len = S2IO_TEST_LEN;
info->n_stats = S2IO_STAT_LEN;
}
/*
* Input Argument/s:
* sp - private member of the device structure, which is a pointer to the
* s2io_nic structure.
* regs - pointer to the structure with parameters given by ethtool for
* dumping the registers.
* reg_space - The input argumnet into which all the registers are dumped.
* Return value:
* void
* Description:
* Dumps the entire register space of xFrame NIC into the user given buffer
* area.
*/
static void s2io_ethtool_gregs(struct net_device *dev,
struct ethtool_regs *regs, void *space)
{
int i;
u64 reg;
u8 *reg_space = (u8 *) space;
nic_t *sp = dev->priv;
regs->len = XENA_REG_SPACE;
regs->version = sp->pdev->subsystem_device;
for (i = 0; i < regs->len; i += 8) {
reg = readq((void *) (sp->bar0 + i));
memcpy((reg_space + i), &reg, 8);
}
}
/*
* Input Argument/s:
* data - address of the private member of the device structure, which
* is a pointer to the s2io_nic structure, provided as an u32.
* Return value:
* void
* Description:
* This is actually the timer function that alternates the adapter LED bit
* of the adapter control bit to set/reset every time on invocation.
* The timer is set for 1/2 a second, hence tha NIC blinks once every second.
*/
static void s2io_phy_id(unsigned long data)
{
nic_t *sp = (nic_t *) data;
XENA_dev_config_t *bar0 = (XENA_dev_config_t *) sp->bar0;
u64 val64 = 0;
u16 subid;
subid = sp->pdev->subsystem_device;
if ((subid & 0xFF) >= 0x07) {
val64 = readq(&bar0->gpio_control);
val64 ^= GPIO_CTRL_GPIO_0;
writeq(val64, &bar0->gpio_control);
} else {
val64 = readq(&bar0->adapter_control);
val64 ^= ADAPTER_LED_ON;
writeq(val64, &bar0->adapter_control);
}
mod_timer(&sp->id_timer, jiffies + HZ / 2);
}
/*
* Input Argument/s:
* sp - private member of the device structure, which is a pointer to the
* s2io_nic structure.
* id - pointer to the structure with identification parameters given by
* ethtool.
* Return value:
* int , returns '0' on success
* Description:
* Used to physically identify the NIC on the system. The Link LED will blink
* for a time specified by the user for identification.
* NOTE: The Link has to be Up to be able to blink the LED. Hence
* identification is possible only if it's link is up.
*/
static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
{
u64 val64 = 0;
nic_t *sp = dev->priv;
XENA_dev_config_t *bar0 = (XENA_dev_config_t *) sp->bar0;
u16 subid;
subid = sp->pdev->subsystem_device;
if ((subid & 0xFF) < 0x07) {
val64 = readq(&bar0->adapter_control);
if (!(val64 & ADAPTER_CNTL_EN)) {
printk(KERN_ERR
"Adapter Link down, cannot blink LED\n");
return -EFAULT;
}
}
if (sp->id_timer.function == NULL) {
init_timer(&sp->id_timer);
sp->id_timer.function = s2io_phy_id;
sp->id_timer.data = (unsigned long) sp;
}
mod_timer(&sp->id_timer, jiffies);
set_current_state(TASK_INTERRUPTIBLE);
if (data)
schedule_timeout(data * HZ);
else
schedule_timeout(MAX_SCHEDULE_TIMEOUT);
del_timer_sync(&sp->id_timer);
return 0;
}
/*
* Input Argument/s:
* sp - private member of the device structure, which is a pointer to the
* s2io_nic structure.
* ep - pointer to the structure with pause parameters given by ethtool.
* Return value:
* void
* Description:
* Returns the Pause frame generation and reception capability of the NIC.
*/
static void s2io_ethtool_getpause_data(struct net_device *dev,
struct ethtool_pauseparam *ep)
{
u64 val64;
nic_t *sp = dev->priv;
XENA_dev_config_t *bar0 = (XENA_dev_config_t *) sp->bar0;
val64 = readq(&bar0->rmac_pause_cfg);
if (val64 & RMAC_PAUSE_GEN_ENABLE)
ep->tx_pause = TRUE;
if (val64 & RMAC_PAUSE_RX_ENABLE)
ep->rx_pause = TRUE;
ep->autoneg = FALSE;
}
/*
* Input Argument/s:
* sp - private member of the device structure, which is a pointer to the
* s2io_nic structure.
* ep - pointer to the structure with pause parameters given by ethtool.
* Return value:
* int, returns '0' on Success
* Description:
* It can be used to set or reset Pause frame generation or reception support
* of the NIC.
*/
int s2io_ethtool_setpause_data(struct net_device *dev,
struct ethtool_pauseparam *ep)
{
u64 val64;
nic_t *sp = dev->priv;
XENA_dev_config_t *bar0 = (XENA_dev_config_t *) sp->bar0;
val64 = readq(&bar0->rmac_pause_cfg);
if (ep->tx_pause)
val64 |= RMAC_PAUSE_GEN_ENABLE;
else
val64 &= ~RMAC_PAUSE_GEN_ENABLE;
if (ep->rx_pause)
val64 |= RMAC_PAUSE_RX_ENABLE;
else
val64 &= ~RMAC_PAUSE_RX_ENABLE;
writeq(val64, &bar0->rmac_pause_cfg);
return 0;
}
/*
* Input Argument/s:
* sp - private member of the device structure, which is a pointer to the
* s2io_nic structure.
* off - offset at which the data must be written
* Return value:
* -1 on failure and the value read from the Eeprom if successful.
* Description:
* Will read 4 bytes of data from the user given offset and return the
* read data.
* NOTE: Will allow to read only part of the EEPROM visible through the
* I2C bus.
*/
#define S2IO_DEV_ID 5
static u32 readEeprom(nic_t * sp, int off)
{
u32 data = -1, exit_cnt = 0;
u64 val64;
XENA_dev_config_t *bar0 = (XENA_dev_config_t *) sp->bar0;
val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
I2C_CONTROL_CNTL_START;
writeq(val64, &bar0->i2c_control);
while (exit_cnt < 5) {
val64 = readq(&bar0->i2c_control);
if (I2C_CONTROL_CNTL_END(val64)) {
data = I2C_CONTROL_GET_DATA(val64);
break;
}
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(HZ / 20);
exit_cnt++;
}
return data;
}
/*
* Input Argument/s:
* sp - private member of the device structure, which is a pointer to the
* s2io_nic structure.
* off - offset at which the data must be written
* data - The data that is to be written
* cnt - Number of bytes of the data that are actually to be written into
* the Eeprom. (max of 3)
* Return value:
* '0' on success, -1 on failure.
* Description:
* Actually writes the relevant part of the data value into the Eeprom
* through the I2C bus.
*/
static int writeEeprom(nic_t * sp, int off, u32 data, int cnt)
{
int exit_cnt = 0, ret = -1;
u64 val64;
XENA_dev_config_t *bar0 = (XENA_dev_config_t *) sp->bar0;
val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA(data) |
I2C_CONTROL_CNTL_START;
writeq(val64, &bar0->i2c_control);
while (exit_cnt < 5) {
val64 = readq(&bar0->i2c_control);
if (I2C_CONTROL_CNTL_END(val64)) {
if (!(val64 & I2C_CONTROL_NACK))
ret = 0;
break;
}
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(HZ / 20);
exit_cnt++;
}
return ret;
}
/*
* A helper function used to invert the 4 byte u32 data field
* byte by byte. This will be used by the Read Eeprom function
* for display purposes.
*/
u32 inv(u32 data)
{
static u32 ret = 0;
if (data) {
u8 c = data;
ret = ((ret << 8) + c);
data >>= 8;
inv(data);
}
return ret;
}
/*
* Input Argument/s:
* sp - private member of the device structure, which is a pointer to the
* s2io_nic structure.
* eeprom - pointer to the user level structure provided by ethtool,
* containing all relevant information.
* data_buf - user defined value to be written into Eeprom.
* Return value:
* int '0' on success
* Description:
* Reads the values stored in the Eeprom at given offset for a given length.
* Stores these values int the input argument data buffer 'data_buf' and
* returns these to the caller (ethtool.)
*/
int s2io_ethtool_geeprom(struct net_device *dev,
struct ethtool_eeprom *eeprom, u8 * data_buf)
{
u32 data, i, valid;
nic_t *sp = dev->priv;
eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
for (i = 0; i < eeprom->len; i += 4) {
data = readEeprom(sp, eeprom->offset + i);
if (data < 0) {
DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
return -EFAULT;
}
valid = inv(data);
memcpy((data_buf + i), &valid, 4);
}
return 0;
}
/*
* Input Argument/s:
* sp - private member of the device structure, which is a pointer to the
* s2io_nic structure.
* eeprom - pointer to the user level structure provided by ethtool,
* containing all relevant information.
* data_buf - user defined value to be written into Eeprom.
* Return value:
* '0' on success, -EFAULT on failure.
* Description:
* Tries to write the user provided value in the Eeprom, at the offset
* given by the user.
*/
static int s2io_ethtool_seeprom(struct net_device *dev,
struct ethtool_eeprom *eeprom,
u8 * data_buf)
{
int len = eeprom->len, cnt = 0;
u32 valid = 0, data;
nic_t *sp = dev->priv;
if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
DBG_PRINT(ERR_DBG,
"ETHTOOL_WRITE_EEPROM Err: Magic value ");
DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
eeprom->magic);
return -EFAULT;
}
while (len) {
data = (u32) data_buf[cnt] & 0x000000FF;
if (data) {
valid = (u32) (data << 24);
} else
valid = data;
if (writeEeprom(sp, (eeprom->offset + cnt), valid, 0)) {
DBG_PRINT(ERR_DBG,
"ETHTOOL_WRITE_EEPROM Err: Cannot ");
DBG_PRINT(ERR_DBG,
"write into the specified offset\n");
return -EFAULT;
}
cnt++;
len--;
}
return 0;
}
/*
* Input Argument/s:
* sp - private member of the device structure, which is a pointer to the
* s2io_nic structure.
* data - variable that returns the result of each of the test conducted by
* the driver.
* Return value:
* '0' on success.
* Description:
* Read and write into all clock domains. The NIC has 3 clock domains,
* see that registers in all the three regions are accessible.
*/
static int s2io_registerTest(nic_t * sp, uint64_t * data)
{
XENA_dev_config_t *bar0 = (XENA_dev_config_t *) sp->bar0;
u64 val64 = 0;
int fail = 0;
val64 = readq(&bar0->pcc_enable);
if (val64 != 0xff00000000000000ULL) {
fail = 1;
DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
}
val64 = readq(&bar0->rmac_pause_cfg);
if (val64 != 0xc000ffff00000000ULL) {
fail = 1;
DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
}
val64 = readq(&bar0->rx_queue_cfg);
if (val64 != 0x0808080808080808ULL) {
fail = 1;
DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
}
val64 = readq(&bar0->xgxs_efifo_cfg);
if (val64 != 0x000000001923141EULL) {
fail = 1;
DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
}
val64 = 0x5A5A5A5A5A5A5A5AULL;
writeq(val64, &bar0->xmsi_data);
val64 = readq(&bar0->xmsi_data);
if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
fail = 1;
DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
}
val64 = 0xA5A5A5A5A5A5A5A5ULL;
writeq(val64, &bar0->xmsi_data);
val64 = readq(&bar0->xmsi_data);
if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
fail = 1;
DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
}
*data = fail;
return 0;
}
/*
* Input Argument/s:
* sp - private member of the device structure, which is a pointer to the
* s2io_nic structure.
* data - variable that returns the result of each of the test conducted by
* the driver.
* Return value:
* '0' on success.
* Description:
* Verify that EEPROM in the xena can be programmed using I2C_CONTROL
* register.
*/
static int s2io_eepromTest(nic_t * sp, uint64_t * data)
{
int fail = 0, ret_data;
/* Test Write Error at offset 0 */
if (!writeEeprom(sp, 0, 0, 3))
fail = 1;
/* Test Write at offset 4f0 */
if (writeEeprom(sp, 0x4F0, 0x01234567, 3))
fail = 1;
if ((ret_data = readEeprom(sp, 0x4f0)) < 0)
fail = 1;
if (ret_data != 0x01234567)
fail = 1;
/* Reset the EEPROM data go FFFF */
writeEeprom(sp, 0x4F0, 0xFFFFFFFF, 3);
/* Test Write Request Error at offset 0x7c */
if (!writeEeprom(sp, 0x07C, 0, 3))
fail = 1;
/* Test Write Request at offset 0x7fc */
if (writeEeprom(sp, 0x7FC, 0x01234567, 3))
fail = 1;
if ((ret_data = readEeprom(sp, 0x7FC)) < 0)
fail = 1;
if (ret_data != 0x01234567)
fail = 1;
/* Reset the EEPROM data go FFFF */
writeEeprom(sp, 0x7FC, 0xFFFFFFFF, 3);
/* Test Write Error at offset 0x80 */
if (!writeEeprom(sp, 0x080, 0, 3))
fail = 1;
/* Test Write Error at offset 0xfc */
if (!writeEeprom(sp, 0x0FC, 0, 3))
fail = 1;
/* Test Write Error at offset 0x100 */
if (!writeEeprom(sp, 0x100, 0, 3))
fail = 1;
/* Test Write Error at offset 4ec */
if (!writeEeprom(sp, 0x4EC, 0, 3))
fail = 1;
*data = fail;
return 0;
}
/*
* Input Argument/s:
* sp - private member of the device structure, which is a pointer to the
* s2io_nic structure.
* data - variable that returns the result of each of the test conducted by
* the driver.
* Return value:
* '0' on success and -1 on failure.
* Description:
* This invokes the MemBist test of the card. We give around
* 2 secs time for the Test to complete. If it's still not complete
* within this peiod, we consider that the test failed.
*/
static int s2io_bistTest(nic_t * sp, uint64_t * data)
{
u8 bist = 0;
int cnt = 0, ret = -1;
pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
bist |= PCI_BIST_START;
pci_write_config_word(sp->pdev, PCI_BIST, bist);
while (cnt < 20) {
pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
if (!(bist & PCI_BIST_START)) {
*data = (bist & PCI_BIST_CODE_MASK);
ret = 0;
break;
}
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(HZ / 10);
cnt++;
}
return ret;
}
/*
* Input Argument/s:
* sp - private member of the device structure, which is a pointer to the
* s2io_nic structure.
* data - variable that returns the result of each of the test conducted by
* the driver.
* Return value:
* '0' on success.
* Description:
* The function verifies the link state of the NIC and updates the input
* argument 'data' appropriately.
*/
static int s2io_linkTest(nic_t * sp, uint64_t * data)
{
XENA_dev_config_t *bar0 = (XENA_dev_config_t *) sp->bar0;
u64 val64;
val64 = readq(&bar0->adapter_status);
if (val64 & ADAPTER_STATUS_RMAC_LOCAL_FAULT)
*data = 1;
return 0;
}
/*
* Input Argument/s:
* sp - private member of the device structure, which is a pointer to the
* s2io_nic structure.
* data - variable that returns the result of each of the test conducted by
* the driver.
* Return value:
* '0' on success.
* Description:
* This is one of the offline test that tests the read and write
* access to the RldRam chip on the NIC.
*/
static int s2io_rldramTest(nic_t * sp, uint64_t * data)
{
XENA_dev_config_t *bar0 = (XENA_dev_config_t *) sp->bar0;
u64 val64;
int cnt, iteration = 0, test_pass = 0;
val64 = readq(&bar0->adapter_control);
val64 &= ~ADAPTER_ECC_EN;
writeq(val64, &bar0->adapter_control);
val64 = readq(&bar0->mc_rldram_test_ctrl);
val64 |= MC_RLDRAM_TEST_MODE;
writeq(val64, &bar0->mc_rldram_test_ctrl);
val64 = readq(&bar0->mc_rldram_mrs);
val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
writeq(val64, &bar0->mc_rldram_mrs);
val64 |= MC_RLDRAM_MRS_ENABLE;
writeq(val64, &bar0->mc_rldram_mrs);
while (iteration < 2) {
val64 = 0x55555555aaaa0000ULL;
if (iteration == 1) {
val64 ^= 0xFFFFFFFFFFFF0000ULL;
}
writeq(val64, &bar0->mc_rldram_test_d0);
val64 = 0xaaaa5a5555550000ULL;
if (iteration == 1) {
val64 ^= 0xFFFFFFFFFFFF0000ULL;
}
writeq(val64, &bar0->mc_rldram_test_d1);
val64 = 0x55aaaaaaaa5a0000ULL;
if (iteration == 1) {
val64 ^= 0xFFFFFFFFFFFF0000ULL;
}
writeq(val64, &bar0->mc_rldram_test_d2);
val64 = (u64) (0x0000003fffff0000ULL);
writeq(val64, &bar0->mc_rldram_test_add);
val64 = MC_RLDRAM_TEST_MODE;
writeq(val64, &bar0->mc_rldram_test_ctrl);
val64 |=
MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
MC_RLDRAM_TEST_GO;
writeq(val64, &bar0->mc_rldram_test_ctrl);
for (cnt = 0; cnt < 5; cnt++) {
val64 = readq(&bar0->mc_rldram_test_ctrl);
if (val64 & MC_RLDRAM_TEST_DONE)
break;
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(HZ / 5);
}
if (cnt == 5)
break;
val64 = MC_RLDRAM_TEST_MODE;
writeq(val64, &bar0->mc_rldram_test_ctrl);
val64 |= MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
writeq(val64, &bar0->mc_rldram_test_ctrl);
for (cnt = 0; cnt < 5; cnt++) {
val64 = readq(&bar0->mc_rldram_test_ctrl);
if (val64 & MC_RLDRAM_TEST_DONE)
break;
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(HZ / 2);
}
if (cnt == 5)
break;
val64 = readq(&bar0->mc_rldram_test_ctrl);
if (val64 & MC_RLDRAM_TEST_PASS)
test_pass = 1;
iteration++;
}
if (!test_pass)
*data = 1;
else
*data = 0;
return 0;
}
/*
* Input Argument/s:
* sp - private member of the device structure, which is a pointer to the
* s2io_nic structure.
* ethtest - pointer to a ethtool command specific structure that will be
* returned to the user.
* data - variable that returns the result of each of the test conducted by
* the driver.
* Return value:
* SUCCESS on success and an appropriate -1 on failure.
* Description:
* This function conducts 6 tests ( 4 offline and 2 online) to determine
* the health of the card.
*/
static void s2io_ethtool_test(struct net_device *dev,
struct ethtool_test *ethtest,
uint64_t * data)
{
nic_t *sp = dev->priv;
int orig_state = netif_running(sp->dev);
if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
/* Offline Tests. */
if (orig_state) {
s2io_close(sp->dev);
s2io_set_swapper(sp);
} else
s2io_set_swapper(sp);
if (s2io_registerTest(sp, &data[0]))
ethtest->flags |= ETH_TEST_FL_FAILED;
s2io_reset(sp);
s2io_set_swapper(sp);
if (s2io_rldramTest(sp, &data[3]))
ethtest->flags |= ETH_TEST_FL_FAILED;
s2io_reset(sp);
s2io_set_swapper(sp);
if (s2io_eepromTest(sp, &data[1]))
ethtest->flags |= ETH_TEST_FL_FAILED;
if (s2io_bistTest(sp, &data[4]))
ethtest->flags |= ETH_TEST_FL_FAILED;
if (orig_state)
s2io_open(sp->dev);
data[2] = 0;
} else {
/* Online Tests. */
if (!orig_state) {
DBG_PRINT(ERR_DBG,
"%s: is not up, cannot run test\n",
dev->name);
data[0] = -1;
data[1] = -1;
data[2] = -1;
data[3] = -1;
data[4] = -1;
}
if (s2io_linkTest(sp, &data[2]))
ethtest->flags |= ETH_TEST_FL_FAILED;
data[0] = 0;
data[1] = 0;
data[3] = 0;
data[4] = 0;
}
}
static void s2io_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *estats,
u64 * tmp_stats)
{
int i = 0;
nic_t *sp = dev->priv;
StatInfo_t *stat_info = sp->mac_control.StatsInfo;
tmp_stats[i++] = stat_info->tmac_frms;
tmp_stats[i++] = stat_info->tmac_data_octets;
tmp_stats[i++] = stat_info->tmac_drop_frms;
tmp_stats[i++] = stat_info->tmac_mcst_frms;
tmp_stats[i++] = stat_info->tmac_bcst_frms;
tmp_stats[i++] = stat_info->tmac_pause_ctrl_frms;
tmp_stats[i++] = stat_info->tmac_any_err_frms;
tmp_stats[i++] = stat_info->tmac_vld_ip_octets;
tmp_stats[i++] = stat_info->tmac_vld_ip;
tmp_stats[i++] = stat_info->tmac_drop_ip;
tmp_stats[i++] = stat_info->tmac_icmp;
tmp_stats[i++] = stat_info->tmac_rst_tcp;
tmp_stats[i++] = stat_info->tmac_tcp;
tmp_stats[i++] = stat_info->tmac_udp;
tmp_stats[i++] = stat_info->rmac_vld_frms;
tmp_stats[i++] = stat_info->rmac_data_octets;
tmp_stats[i++] = stat_info->rmac_fcs_err_frms;
tmp_stats[i++] = stat_info->rmac_drop_frms;
tmp_stats[i++] = stat_info->rmac_vld_mcst_frms;
tmp_stats[i++] = stat_info->rmac_vld_bcst_frms;
tmp_stats[i++] = stat_info->rmac_in_rng_len_err_frms;
tmp_stats[i++] = stat_info->rmac_long_frms;
tmp_stats[i++] = stat_info->rmac_pause_ctrl_frms;
tmp_stats[i++] = stat_info->rmac_discarded_frms;
tmp_stats[i++] = stat_info->rmac_usized_frms;
tmp_stats[i++] = stat_info->rmac_osized_frms;
tmp_stats[i++] = stat_info->rmac_frag_frms;
tmp_stats[i++] = stat_info->rmac_jabber_frms;
tmp_stats[i++] = stat_info->rmac_ip;
tmp_stats[i++] = stat_info->rmac_ip_octets;
tmp_stats[i++] = stat_info->rmac_hdr_err_ip;
tmp_stats[i++] = stat_info->rmac_drop_ip;
tmp_stats[i++] = stat_info->rmac_icmp;
tmp_stats[i++] = stat_info->rmac_tcp;
tmp_stats[i++] = stat_info->rmac_udp;
tmp_stats[i++] = stat_info->rmac_err_drp_udp;
tmp_stats[i++] = stat_info->rmac_pause_cnt;
tmp_stats[i++] = stat_info->rmac_accepted_ip;
tmp_stats[i++] = stat_info->rmac_err_tcp;
}
int s2io_ethtool_get_regs_len(struct net_device *dev)
{
return (XENA_REG_SPACE);
}
u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
{
nic_t *sp = dev->priv;
return (sp->rx_csum);
}
int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
{
nic_t *sp = dev->priv;
if (data)
sp->rx_csum = 1;
else
sp->rx_csum = 0;
return 0;
}
int s2io_get_eeprom_len(struct net_device *dev)
{
return (XENA_EEPROM_SPACE);
}
int s2io_ethtool_self_test_count(struct net_device *dev)
{
return (S2IO_TEST_LEN);
}
void s2io_ethtool_get_strings(struct net_device *dev,
u32 stringset, u8 * data)
{
switch (stringset) {
case ETH_SS_TEST:
memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
break;
case ETH_SS_STATS:
memcpy(data, &ethtool_stats_keys,
sizeof(ethtool_stats_keys));
}
}
static int s2io_ethtool_get_stats_count(struct net_device *dev)
{
return (S2IO_STAT_LEN);
}
static struct ethtool_ops netdev_ethtool_ops = {
.get_settings = s2io_ethtool_gset,
.set_settings = s2io_ethtool_sset,
.get_drvinfo = s2io_ethtool_gdrvinfo,
.get_regs_len = s2io_ethtool_get_regs_len,
.get_regs = s2io_ethtool_gregs,
.get_link = ethtool_op_get_link,
.get_eeprom_len = s2io_get_eeprom_len,
.get_eeprom = s2io_ethtool_geeprom,
.set_eeprom = s2io_ethtool_seeprom,
.get_pauseparam = s2io_ethtool_getpause_data,
.set_pauseparam = s2io_ethtool_setpause_data,
.get_rx_csum = s2io_ethtool_get_rx_csum,
.set_rx_csum = s2io_ethtool_set_rx_csum,
.get_tx_csum = ethtool_op_get_tx_csum,
.set_tx_csum = ethtool_op_set_tx_csum,
.get_sg = ethtool_op_get_sg,
.set_sg = ethtool_op_set_sg,
#ifdef NETIF_F_TSO
.get_tso = ethtool_op_get_tso,
.set_tso = ethtool_op_set_tso,
#endif
.self_test_count = s2io_ethtool_self_test_count,
.self_test = s2io_ethtool_test,
.get_strings = s2io_ethtool_get_strings,
.phys_id = s2io_ethtool_idnic,
.get_stats_count = s2io_ethtool_get_stats_count,
.get_ethtool_stats = s2io_get_ethtool_stats
};
/*
* Input Argument/s:
* dev - Device pointer.
* ifr - An IOCTL specefic structure, that can contain a pointer to
* a proprietary structure used to pass information to the driver.
* cmd - This is used to distinguish between the different commands that
* can be passed to the IOCTL functions.
* Return value:
* '0' on success and an appropriate (-)ve integer as defined in errno.h
* file on failure.
* Description:
* This function has support for ethtool, adding multiple MAC addresses on
* the NIC and some DBG commands for the util tool.
*/
int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
return -EOPNOTSUPP;
}
/*
* Input Argument/s:
* dev - device pointer.
* new_mtu - the new MTU size for the device.
* Return value:
* '0' on success and an appropriate (-)ve integer as defined in errno.h
* file on failure.
* Description:
* A driver entry point to change MTU size for the device. Before changing
* the MTU the device must be stopped.
*/
int s2io_change_mtu(struct net_device *dev, int new_mtu)
{
nic_t *sp = dev->priv;
XENA_dev_config_t *bar0 = (XENA_dev_config_t *) sp->bar0;
register u64 val64;
if (netif_running(dev)) {
DBG_PRINT(ERR_DBG, "%s: Must be stopped to ", dev->name);
DBG_PRINT(ERR_DBG, "change its MTU \n");
return -EBUSY;
}
if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
dev->name);
return -EPERM;
}
/* Set the new MTU into the PYLD register of the NIC */
val64 = new_mtu;
writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
dev->mtu = new_mtu;
return 0;
}
/*
* Input Argument/s:
* dev_adr - address of the device structure in dma_addr_t format.
* Return value:
* void.
* Description:
* This is the tasklet or the bottom half of the ISR. This is
* an extension of the ISR which is scheduled by the scheduler to be run
* when the load on the CPU is low. All low priority tasks of the ISR can
* be pushed into the tasklet. For now the tasklet is used only to
* replenish the Rx buffers in the Rx buffer descriptors.
*/
static void s2io_tasklet(unsigned long dev_addr)
{
struct net_device *dev = (struct net_device *) dev_addr;
nic_t *sp = dev->priv;
int i, ret;
mac_info_t *mac_control;
struct config_param *config;
mac_control = &sp->mac_control;
config = &sp->config;
if (!TASKLET_IN_USE) {
for (i = 0; i < config->RxRingNum; i++) {
ret = fill_rx_buffers(sp, i);
if (ret == -ENOMEM) {
DBG_PRINT(ERR_DBG, "%s: Out of ",
dev->name);
DBG_PRINT(ERR_DBG, "memory in tasklet\n");
return;
} else if (ret == -EFILL) {
DBG_PRINT(ERR_DBG,
"%s: Rx Ring %d is full\n",
dev->name, i);
return;
}
}
clear_bit(0, (unsigned long *) (&sp->tasklet_status));
}
}
/*
* Description:
*
*/
static void s2io_set_link(unsigned long data)
{
nic_t *nic = (nic_t *) data;
struct net_device *dev = nic->dev;
XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
register u64 val64, err_reg;
/* Allow a small delay for the NICs self initiated
* cleanup to complete.
*/
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(HZ / 10);
val64 = readq(&bar0->adapter_status);
if (verify_xena_quiescence(val64, nic->device_enabled_once)) {
/* Acknowledge interrupt and clear the R1 register */
err_reg = readq(&bar0->mac_rmac_err_reg);
writeq(err_reg, &bar0->mac_rmac_err_reg);
if (LINK_IS_UP(val64)) {
val64 = readq(&bar0->adapter_control);
val64 |= ADAPTER_CNTL_EN;
writeq(val64, &bar0->adapter_control);
val64 |= ADAPTER_LED_ON;
writeq(val64, &bar0->adapter_control);
val64 = readq(&bar0->adapter_status);
if (!LINK_IS_UP(val64)) {
DBG_PRINT(ERR_DBG, "%s:", dev->name);
DBG_PRINT(ERR_DBG, " Link down");
DBG_PRINT(ERR_DBG, "after ");
DBG_PRINT(ERR_DBG, "enabling ");
DBG_PRINT(ERR_DBG, "device \n");
}
if (nic->device_enabled_once == FALSE) {
nic->device_enabled_once = TRUE;
}
s2io_link(nic, LINK_UP);
} else {
s2io_link(nic, LINK_DOWN);
}
} else { /* NIC is not Quiescent. */
DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
netif_stop_queue(dev);
}
}
/*
* Description:
* This function is scheduled to be run by the s2io_tx_watchdog
* function after 0.5 secs to reset the NIC. The idea is to reduce
* the run time of the watch dog routine which is run holding a
* spin lock.
*/
static void s2io_restart_nic(unsigned long data)
{
struct net_device *dev = (struct net_device *) data;
nic_t *sp = dev->priv;
s2io_close(dev);
sp->device_close_flag = TRUE;
s2io_open(dev);
DBG_PRINT(ERR_DBG,
"%s: was reset by Tx watchdog timer.\n", dev->name);
}
/*
* Input Argument/s:
* dev - device pointer.
* Return value:
* void
* Description:
* This function is triggered if the Tx Queue is stopped
* for a pre-defined amount of time when the Interface is still up.
* If the Interface is jammed in such a situation, the hardware is
* reset (by s2io_close) and restarted again (by s2io_open) to
* overcome any problem that might have been caused in the hardware.
*/
static void s2io_tx_watchdog(struct net_device *dev)
{
nic_t *sp = dev->priv;
if (netif_carrier_ok(dev)) {
schedule_work(&sp->rst_timer_task);
}
}
/*
* Input Argument/s:
* sp - private member of the device structure, which is a pointer to the
* s2io_nic structure.
* skb - the socket buffer pointer.
* len - length of the packet
* cksum - FCS checksum of the frame.
* ring_no - the ring from which this RxD was extracted.
* Return value:
* SUCCESS on success and -1 on failure.
* Description:
* This function is called by the Tx interrupt serivce routine to perform
* some OS related operations on the SKB before passing it to the upper
* layers. It mainly checks if the checksum is OK, if so adds it to the
* SKBs cksum variable, increments the Rx packet count and passes the SKB
* to the upper layer. If the checksum is wrong, it increments the Rx
* packet error count, frees the SKB and returns error.
*/
static int rxOsmHandler(nic_t * sp, u16 len, RxD_t * rxdp, int ring_no)
{
struct net_device *dev = (struct net_device *) sp->dev;
struct sk_buff *skb =
(struct sk_buff *) ((unsigned long) rxdp->Host_Control);
u16 l3_csum, l4_csum;
l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && (sp->rx_csum)) {
l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
/* NIC verifies if the Checksum of the received
* frame is Ok or not and accordingly returns
* a flag in the RxD.
*/
skb->ip_summed = CHECKSUM_UNNECESSARY;
} else {
/*
* Packet with erroneous checksum, let the
* upper layers deal with it.
*/
skb->ip_summed = CHECKSUM_NONE;
}
} else {
skb->ip_summed = CHECKSUM_NONE;
}
skb->dev = dev;
skb_put(skb, len);
skb->protocol = eth_type_trans(skb, dev);
#ifdef CONFIG_S2IO_NAPI
netif_receive_skb(skb);
#else
netif_rx(skb);
#endif
dev->last_rx = jiffies;
#if DEBUG_ON
sp->rxpkt_cnt++;
#endif
sp->rx_pkt_count++;
sp->stats.rx_packets++;
sp->stats.rx_bytes += len;
sp->rxpkt_bytes += len;
atomic_dec(&sp->rx_bufs_left[ring_no]);
rxdp->Host_Control = 0;
return SUCCESS;
}
int check_for_txSpace(nic_t * sp)
{
u32 put_off, get_off, queue_len;
int ret = TRUE, i;
for (i = 0; i < sp->config.TxFIFONum; i++) {
queue_len = sp->mac_control.tx_curr_put_info[i].fifo_len
+ 1;
put_off = sp->mac_control.tx_curr_put_info[i].offset;
get_off = sp->mac_control.tx_curr_get_info[i].offset;
if (((put_off + 1) % queue_len) == get_off) {
ret = FALSE;
break;
}
}
return ret;
}
/*
* Input Argument/s:
* sp - private member of the device structure, which is a pointer to the
* s2io_nic structure.
* link - inidicates whether link is UP/DOWN.
* Return value:
* void.
* Description:
* This function stops/starts the Tx queue depending on whether the link
* status of the NIC is is down or up. This is called by the Alarm interrupt
* handler whenever a link change interrupt comes up.
*/
void s2io_link(nic_t * sp, int link)
{
struct net_device *dev = (struct net_device *) sp->dev;
if (link != sp->last_link_state) {
if (link == LINK_DOWN) {
DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
netif_carrier_off(dev);
netif_stop_queue(dev);
} else {
DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
netif_carrier_on(dev);
if (check_for_txSpace(sp) == TRUE) {
/* Don't wake the queue, if we know there
* are no free TxDs available.
*/
netif_wake_queue(dev);
}
}
}
sp->last_link_state = link;
}
/*
* Input Argument/s:
* pdev - structure containing the PCI related information of the device.
* Return value:
* returns the revision ID of the device.
* Description:
* Function to identify the Revision ID of xena.
*/
int get_xena_rev_id(struct pci_dev *pdev)
{
u8 id = 0;
int ret;
ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id);
return id;
}
/*
* Input Argument/s:
* sp - private member of the device structure, which is a pointer to the
* s2io_nic structure.
* Return value:
* void
* Description:
* This function initializes a few of the PCI and PCI-X configuration registers
* with recommended values.
*/
static void s2io_init_pci(nic_t * sp)
{
u16 pci_cmd = 0;
/* Enable Data Parity Error Recovery in PCI-X command register. */
pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
&(sp->pcix_cmd));
pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
(sp->pcix_cmd | 1));
pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
&(sp->pcix_cmd));
/* Set the PErr Response bit in PCI command register. */
pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
pci_write_config_word(sp->pdev, PCI_COMMAND,
(pci_cmd | PCI_COMMAND_PARITY));
pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
/* Set user specified value in Latency Timer */
if (latency_timer) {
pci_write_config_byte(sp->pdev, PCI_LATENCY_TIMER,
latency_timer);
pci_read_config_byte(sp->pdev, PCI_LATENCY_TIMER,
&latency_timer);
}
/* Set MMRB count to 4096 in PCI-X Command register. */
pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
(sp->pcix_cmd | 0x0C));
pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
&(sp->pcix_cmd));
/* Setting Maximum outstanding splits to two for now. */
sp->pcix_cmd &= 0xFF1F;
sp->pcix_cmd |=
XENA_MAX_OUTSTANDING_SPLITS(XENA_TWO_SPLIT_TRANSACTION);
pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
sp->pcix_cmd);
pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
&(sp->pcix_cmd));
}
MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@s2io.com>");
MODULE_LICENSE("GPL");
module_param(ring_num, uint, 0);
module_param_array(frame_len, uint, NULL, 0);
module_param_array(ring_len, uint, NULL, 0);
module_param(fifo_num, uint, 0);
module_param_array(fifo_len, uint, NULL, 0);
module_param(rx_prio, uint, 0);
module_param(tx_prio, uint, 0);
module_param(latency_timer, byte, 0);
/*
* Input Argument/s:
* pdev - structure containing the PCI related information of the device.
* pre - the List of PCI devices supported by the driver listed in s2io_tbl.
* Return value:
* returns '0' on success and negative on failure.
* Description:
* The function initializes an adapter identified by the pci_dec structure.
* All OS related initialization including memory and device structure and
* initlaization of the device private variable is done. Also the swapper
* control register is initialized to enable read and write into the I/O
* registers of the device.
*
*/
static int __devinit
s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
{
nic_t *sp;
struct net_device *dev;
char *dev_name = "S2IO 10GE NIC";
int i, j, ret;
int dma_flag = FALSE;
u32 mac_up, mac_down;
u64 val64 = 0, tmp64 = 0;
XENA_dev_config_t *bar0 = NULL;
u16 subid;
mac_info_t *mac_control;
struct config_param *config;
if ((ret = pci_enable_device(pdev))) {
DBG_PRINT(ERR_DBG,
"s2io_init_nic: pci_enable_device failed\n");
return ret;
}
if (!pci_set_dma_mask(pdev, 0xffffffffffffffffULL)) {
DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
dma_flag = TRUE;
if (pci_set_consistent_dma_mask
(pdev, 0xffffffffffffffffULL)) {
DBG_PRINT(ERR_DBG,
"Unable to obtain 64bit DMA for \
consistent allocations\n");
pci_disable_device(pdev);
return -ENOMEM;
}
} else if (!pci_set_dma_mask(pdev, 0xffffffffUL)) {
DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
} else {
pci_disable_device(pdev);
return -ENOMEM;
}
if (pci_request_regions(pdev, s2io_driver_name)) {
DBG_PRINT(ERR_DBG, "Request Regions failed\n"),
pci_disable_device(pdev);
return -ENODEV;
}
dev = alloc_etherdev(sizeof(nic_t));
if (dev == NULL) {
DBG_PRINT(ERR_DBG, "Device allocation failed\n");
pci_disable_device(pdev);
pci_release_regions(pdev);
return -ENODEV;
}
pci_set_master(pdev);
pci_set_drvdata(pdev, dev);
SET_MODULE_OWNER(dev);
SET_NETDEV_DEV(dev, &pdev->dev);
/* Private member variable initialized to s2io NIC structure */
sp = dev->priv;
memset(sp, 0, sizeof(nic_t));
sp->dev = dev;
sp->pdev = pdev;
sp->vendor_id = pdev->vendor;
sp->device_id = pdev->device;
sp->high_dma_flag = dma_flag;
sp->irq = pdev->irq;
sp->device_enabled_once = FALSE;
strcpy(sp->name, dev_name);
/* Initialize some PCI/PCI-X fields of the NIC. */
s2io_init_pci(sp);
/* Setting the device configuration parameters.
* Most of these parameters can be specified by the user during
* module insertion as they are module loadable parameters. If
* these parameters are not not specified during load time, they
* are initialized with default values.
*/
mac_control = &sp->mac_control;
config = &sp->config;
/* Tx side parameters. */
config->TxFIFONum = fifo_num ? fifo_num : 1;
if (!fifo_len[0] && (fifo_num > 1)) {
printk(KERN_ERR "Fifo Lens not specified for all FIFOs\n");
goto init_failed;
}
if (fifo_len[0]) {
int cnt;
for (cnt = 0; fifo_len[cnt]; cnt++);
if (fifo_num) {
if (cnt < fifo_num) {
printk(KERN_ERR
"Fifo Lens not specified for ");
printk(KERN_ERR "all FIFOs\n");
goto init_failed;
}
}
for (cnt = 0; cnt < config->TxFIFONum; cnt++) {
config->TxCfg[cnt].FifoLen = fifo_len[cnt];
config->TxCfg[cnt].FifoPriority = cnt;
}
} else {
config->TxCfg[0].FifoLen = DEFAULT_FIFO_LEN;
config->TxCfg[0].FifoPriority = 0;
}
config->TxIntrType = TXD_INT_TYPE_UTILZ;
for (i = 0; i < config->TxFIFONum; i++) {
if (config->TxCfg[i].FifoLen < 65) {
config->TxIntrType = TXD_INT_TYPE_PER_LIST;
break;
}
}
config->TxCfg[0].fNoSnoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
config->MaxTxDs = MAX_SKB_FRAGS;
config->TxFlow = TRUE;
/* Rx side parameters. */
config->RxRingNum = ring_num ? ring_num : 1;
if (ring_len[0]) {
int cnt;
for (cnt = 0; cnt < config->RxRingNum; cnt++) {
config->RxCfg[cnt].NumRxd = ring_len[cnt];
config->RxCfg[cnt].RingPriority = cnt;
}
} else {
int id;
if ((id = get_xena_rev_id(pdev)) == 1) {
config->RxCfg[0].NumRxd = LARGE_RXD_CNT;
} else {
config->RxCfg[0].NumRxd = SMALL_RXD_CNT;
}
config->RxCfg[0].RingPriority = 0;
}
config->RxCfg[0].RingOrg = RING_ORG_BUFF1;
config->RxCfg[0].RxdThresh = DEFAULT_RXD_THRESHOLD;
config->RxCfg[0].fNoSnoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
config->RxCfg[0].RxD_BackOff_Interval = TBD;
config->RxFlow = TRUE;
/* Miscellaneous parameters. */
config->RxVLANEnable = TRUE;
config->MTU = MAX_MTU_VLAN;
config->JumboEnable = FALSE;
/* Setting Mac Control parameters */
mac_control->txdl_len = MAX_SKB_FRAGS;
mac_control->rmac_pause_time = 0;
/* Initialize Ring buffer parameters. */
for (i = 0; i < config->RxRingNum; i++)
atomic_set(&sp->rx_bufs_left[i], 0);
/* initialize the shared memory used by the NIC and the host */
if (initSharedMem(sp)) {
DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
dev->name);
goto mem_alloc_failed;
}
sp->bar0 = (caddr_t) ioremap(pci_resource_start(pdev, 0),
pci_resource_len(pdev, 0));
if (!sp->bar0) {
DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem1\n",
dev->name);
goto bar0_remap_failed;
}
sp->bar1 = (caddr_t) ioremap(pci_resource_start(pdev, 2),
pci_resource_len(pdev, 2));
if (!sp->bar1) {
DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem2\n",
dev->name);
goto bar1_remap_failed;
}
dev->irq = pdev->irq;
dev->base_addr = (unsigned long) sp->bar0;
/* Initializing the BAR1 address as the start of the FIFO pointer. */
for (j = 0; j < MAX_TX_FIFOS; j++) {
mac_control->tx_FIFO_start[j] = (TxFIFO_element_t *)
(sp->bar1 + (j * 0x00020000));
}
/* Driver entry points */
dev->open = &s2io_open;
dev->stop = &s2io_close;
dev->hard_start_xmit = &s2io_xmit;
dev->get_stats = &s2io_get_stats;
dev->set_multicast_list = &s2io_set_multicast;
dev->do_ioctl = &s2io_ioctl;
dev->change_mtu = &s2io_change_mtu;
SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
/*
* will use eth_mac_addr() for dev->set_mac_address
* mac address will be set every time dev->open() is called
*/
#ifdef CONFIG_S2IO_NAPI
dev->poll = s2io_poll;
dev->weight = 128; /* For now. */
#endif
dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
if (sp->high_dma_flag == TRUE)
dev->features |= NETIF_F_HIGHDMA;
#ifdef NETIF_F_TSO
dev->features |= NETIF_F_TSO;
#endif
dev->tx_timeout = &s2io_tx_watchdog;
dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
INIT_WORK(&sp->rst_timer_task,
(void (*)(void *)) s2io_restart_nic, dev);
INIT_WORK(&sp->set_link_task,
(void (*)(void *)) s2io_set_link, sp);
if (register_netdev(dev)) {
DBG_PRINT(ERR_DBG, "Device registration failed\n");
goto register_failed;
}
pci_save_state(sp->pdev);
/* Setting swapper control on the NIC, for proper reset operation */
if (s2io_set_swapper(sp)) {
DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
dev->name);
goto set_swap_failed;
}
/* Fix for all "FFs" MAC address problems observed on Alpha platforms */
FixMacAddress(sp);
s2io_reset(sp);
/* Setting swapper control on the NIC, so the MAC address can be read.
*/
if (s2io_set_swapper(sp)) {
DBG_PRINT(ERR_DBG,
"%s: S2IO: swapper settings are wrong\n",
dev->name);
goto set_swap_failed;
}
/* MAC address initialization.
* For now only one mac address will be read and used.
*/
bar0 = (XENA_dev_config_t *) sp->bar0;
val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
writeq(val64, &bar0->rmac_addr_cmd_mem);
waitForCmdComplete(sp);
tmp64 = readq(&bar0->rmac_addr_data0_mem);
mac_down = (u32) tmp64;
mac_up = (u32) (tmp64 >> 32);
memset(sp->defMacAddr[0].mac_addr, 0, sizeof(ETH_ALEN));
sp->defMacAddr[0].mac_addr[3] = (u8) (mac_up);
sp->defMacAddr[0].mac_addr[2] = (u8) (mac_up >> 8);
sp->defMacAddr[0].mac_addr[1] = (u8) (mac_up >> 16);
sp->defMacAddr[0].mac_addr[0] = (u8) (mac_up >> 24);
sp->defMacAddr[0].mac_addr[5] = (u8) (mac_down >> 16);
sp->defMacAddr[0].mac_addr[4] = (u8) (mac_down >> 24);
DBG_PRINT(INIT_DBG,
"DEFAULT MAC ADDR:0x%02x-%02x-%02x-%02x-%02x-%02x\n",
sp->defMacAddr[0].mac_addr[0],
sp->defMacAddr[0].mac_addr[1],
sp->defMacAddr[0].mac_addr[2],
sp->defMacAddr[0].mac_addr[3],
sp->defMacAddr[0].mac_addr[4],
sp->defMacAddr[0].mac_addr[5]);
/* Set the factory defined MAC address initially */
dev->addr_len = ETH_ALEN;
memcpy(dev->dev_addr, sp->defMacAddr, ETH_ALEN);
/* Initialize the tasklet status flag */
atomic_set(&(sp->tasklet_status), 0);
/* Initialize spinlocks */
spin_lock_init(&sp->isr_lock);
spin_lock_init(&sp->tx_lock);
/* SXE-002: Configure link and activity LED to init state
* on driver load.
*/
subid = sp->pdev->subsystem_device;
if ((subid & 0xFF) >= 0x07) {
val64 = readq(&bar0->gpio_control);
val64 |= 0x0000800000000000ULL;
writeq(val64, &bar0->gpio_control);
val64 = 0x0411040400000000ULL;
writeq(val64, (u64 *) ((u8 *) bar0 + 0x2700));
val64 = readq(&bar0->gpio_control);
}
/* Make Link state as off at this point, when the Link change
* interrupt comes the state will be automatically changed to
* the right state.
*/
netif_carrier_off(dev);
sp->last_link_state = LINK_DOWN;
sp->rx_csum = 1; /* Rx chksum verify enabled by default */
return 0;
set_swap_failed:
unregister_netdev(dev);
register_failed:
iounmap(sp->bar1);
bar1_remap_failed:
iounmap(sp->bar0);
bar0_remap_failed:
mem_alloc_failed:
freeSharedMem(sp);
init_failed:
pci_disable_device(pdev);
pci_release_regions(pdev);
pci_set_drvdata(pdev, NULL);
free_netdev(dev);
return -ENODEV;
}
/*
* Input Argument/s:
* pdev - structure containing the PCI related information of the device.
* Return value:
* void
* Description:
* This function is called by the Pci subsystem to release a PCI device
* and free up all resource held up by the device. This could be in response
* to a Hot plug event or when the driver is to be removed from memory.
*/
static void __devexit s2io_rem_nic(struct pci_dev *pdev)
{
struct net_device *dev =
(struct net_device *) pci_get_drvdata(pdev);
nic_t *sp;
if (dev == NULL) {
DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
return;
}
sp = dev->priv;
freeSharedMem(sp);
iounmap(sp->bar0);
iounmap(sp->bar1);
pci_disable_device(pdev);
pci_release_regions(pdev);
pci_set_drvdata(pdev, NULL);
unregister_netdev(dev);
free_netdev(dev);
}
int __init s2io_starter(void)
{
return pci_module_init(&s2io_driver);
}
void s2io_closer(void)
{
pci_unregister_driver(&s2io_driver);
DBG_PRINT(INIT_DBG, "cleanup done\n");
}
module_init(s2io_starter);
module_exit(s2io_closer);