This repository has been archived on 2023-08-20. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files

2465 lines
62 KiB
C

/*
* Universal Host Controller Interface driver for USB.
*
* Maintainer: Alan Stern <stern@rowland.harvard.edu>
*
* (C) Copyright 1999 Linus Torvalds
* (C) Copyright 1999-2002 Johannes Erdfelt, johannes@erdfelt.com
* (C) Copyright 1999 Randy Dunlap
* (C) Copyright 1999 Georg Acher, acher@in.tum.de
* (C) Copyright 1999 Deti Fliegl, deti@fliegl.de
* (C) Copyright 1999 Thomas Sailer, sailer@ife.ee.ethz.ch
* (C) Copyright 1999 Roman Weissgaerber, weissg@vienna.at
* (C) Copyright 2000 Yggdrasil Computing, Inc. (port of new PCI interface
* support from usb-ohci.c by Adam Richter, adam@yggdrasil.com).
* (C) Copyright 1999 Gregory P. Smith (from usb-ohci.c)
* (C) Copyright 2004 Alan Stern, stern@rowland.harvard.edu
*
* Intel documents this fairly well, and as far as I know there
* are no royalties or anything like that, but even so there are
* people who decided that they want to do the same thing in a
* completely different way.
*
* WARNING! The USB documentation is downright evil. Most of it
* is just crap, written by a committee. You're better off ignoring
* most of it, the important stuff is:
* - the low-level protocol (fairly simple but lots of small details)
* - working around the horridness of the rest
*/
#include <linux/config.h>
#ifdef CONFIG_USB_DEBUG
#define DEBUG
#else
#undef DEBUG
#endif
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/ioport.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/smp_lock.h>
#include <linux/errno.h>
#include <linux/unistd.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/proc_fs.h>
#include <linux/pm.h>
#include <linux/dmapool.h>
#include <linux/dma-mapping.h>
#include <linux/usb.h>
#include <linux/bitops.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/system.h>
#include "../core/hcd.h"
#include "uhci-hcd.h"
/*
* Version Information
*/
#define DRIVER_VERSION "v2.2"
#define DRIVER_AUTHOR "Linus 'Frodo Rabbit' Torvalds, Johannes Erdfelt, \
Randy Dunlap, Georg Acher, Deti Fliegl, Thomas Sailer, Roman Weissgaerber, \
Alan Stern"
#define DRIVER_DESC "USB Universal Host Controller Interface driver"
/*
* debug = 0, no debugging messages
* debug = 1, dump failed URB's except for stalls
* debug = 2, dump all failed URB's (including stalls)
* show all queues in /proc/driver/uhci/[pci_addr]
* debug = 3, show all TD's in URB's when dumping
*/
#ifdef DEBUG
static int debug = 1;
#else
static int debug = 0;
#endif
module_param(debug, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(debug, "Debug level");
static char *errbuf;
#define ERRBUF_LEN (32 * 1024)
#include "uhci-hub.c"
#include "uhci-debug.c"
static kmem_cache_t *uhci_up_cachep; /* urb_priv */
static unsigned int uhci_get_current_frame_number(struct uhci_hcd *uhci);
static int uhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb);
static void uhci_unlink_generic(struct uhci_hcd *uhci, struct urb *urb);
static void uhci_remove_pending_urbps(struct uhci_hcd *uhci);
static void uhci_finish_completion(struct usb_hcd *hcd, struct pt_regs *regs);
static void uhci_free_pending_qhs(struct uhci_hcd *uhci);
static void uhci_free_pending_tds(struct uhci_hcd *uhci);
static void hc_state_transitions(struct uhci_hcd *uhci);
/* If a transfer is still active after this much time, turn off FSBR */
#define IDLE_TIMEOUT msecs_to_jiffies(50)
#define FSBR_DELAY msecs_to_jiffies(50)
/* When we timeout an idle transfer for FSBR, we'll switch it over to */
/* depth first traversal. We'll do it in groups of this number of TD's */
/* to make sure it doesn't hog all of the bandwidth */
#define DEPTH_INTERVAL 5
/*
* Technically, updating td->status here is a race, but it's not really a
* problem. The worst that can happen is that we set the IOC bit again
* generating a spurious interrupt. We could fix this by creating another
* QH and leaving the IOC bit always set, but then we would have to play
* games with the FSBR code to make sure we get the correct order in all
* the cases. I don't think it's worth the effort
*/
static inline void uhci_set_next_interrupt(struct uhci_hcd *uhci)
{
uhci->term_td->status |= cpu_to_le32(TD_CTRL_IOC);
}
static inline void uhci_clear_next_interrupt(struct uhci_hcd *uhci)
{
uhci->term_td->status &= ~cpu_to_le32(TD_CTRL_IOC);
}
static inline void uhci_moveto_complete(struct uhci_hcd *uhci,
struct urb_priv *urbp)
{
list_move_tail(&urbp->urb_list, &uhci->complete_list);
}
static struct uhci_td *uhci_alloc_td(struct uhci_hcd *uhci, struct usb_device *dev)
{
dma_addr_t dma_handle;
struct uhci_td *td;
td = dma_pool_alloc(uhci->td_pool, GFP_ATOMIC, &dma_handle);
if (!td)
return NULL;
td->dma_handle = dma_handle;
td->link = UHCI_PTR_TERM;
td->buffer = 0;
td->frame = -1;
td->dev = dev;
INIT_LIST_HEAD(&td->list);
INIT_LIST_HEAD(&td->remove_list);
INIT_LIST_HEAD(&td->fl_list);
usb_get_dev(dev);
return td;
}
static inline void uhci_fill_td(struct uhci_td *td, u32 status,
u32 token, u32 buffer)
{
td->status = cpu_to_le32(status);
td->token = cpu_to_le32(token);
td->buffer = cpu_to_le32(buffer);
}
/*
* We insert Isochronous URB's directly into the frame list at the beginning
*/
static void uhci_insert_td_frame_list(struct uhci_hcd *uhci, struct uhci_td *td, unsigned framenum)
{
framenum &= (UHCI_NUMFRAMES - 1);
td->frame = framenum;
/* Is there a TD already mapped there? */
if (uhci->fl->frame_cpu[framenum]) {
struct uhci_td *ftd, *ltd;
ftd = uhci->fl->frame_cpu[framenum];
ltd = list_entry(ftd->fl_list.prev, struct uhci_td, fl_list);
list_add_tail(&td->fl_list, &ftd->fl_list);
td->link = ltd->link;
wmb();
ltd->link = cpu_to_le32(td->dma_handle);
} else {
td->link = uhci->fl->frame[framenum];
wmb();
uhci->fl->frame[framenum] = cpu_to_le32(td->dma_handle);
uhci->fl->frame_cpu[framenum] = td;
}
}
static void uhci_remove_td(struct uhci_hcd *uhci, struct uhci_td *td)
{
/* If it's not inserted, don't remove it */
if (td->frame == -1 && list_empty(&td->fl_list))
return;
if (td->frame != -1 && uhci->fl->frame_cpu[td->frame] == td) {
if (list_empty(&td->fl_list)) {
uhci->fl->frame[td->frame] = td->link;
uhci->fl->frame_cpu[td->frame] = NULL;
} else {
struct uhci_td *ntd;
ntd = list_entry(td->fl_list.next, struct uhci_td, fl_list);
uhci->fl->frame[td->frame] = cpu_to_le32(ntd->dma_handle);
uhci->fl->frame_cpu[td->frame] = ntd;
}
} else {
struct uhci_td *ptd;
ptd = list_entry(td->fl_list.prev, struct uhci_td, fl_list);
ptd->link = td->link;
}
wmb();
td->link = UHCI_PTR_TERM;
list_del_init(&td->fl_list);
td->frame = -1;
}
/*
* Inserts a td list into qh.
*/
static void uhci_insert_tds_in_qh(struct uhci_qh *qh, struct urb *urb, __le32 breadth)
{
struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
struct uhci_td *td;
u32 *plink;
/* Ordering isn't important here yet since the QH hasn't been */
/* inserted into the schedule yet */
plink = &qh->element;
list_for_each_entry(td, &urbp->td_list, list) {
*plink = cpu_to_le32(td->dma_handle) | breadth;
plink = &td->link;
}
*plink = UHCI_PTR_TERM;
}
static void uhci_free_td(struct uhci_hcd *uhci, struct uhci_td *td)
{
if (!list_empty(&td->list))
dev_warn(uhci_dev(uhci), "td %p still in list!\n", td);
if (!list_empty(&td->remove_list))
dev_warn(uhci_dev(uhci), "td %p still in remove_list!\n", td);
if (!list_empty(&td->fl_list))
dev_warn(uhci_dev(uhci), "td %p still in fl_list!\n", td);
if (td->dev)
usb_put_dev(td->dev);
dma_pool_free(uhci->td_pool, td, td->dma_handle);
}
static struct uhci_qh *uhci_alloc_qh(struct uhci_hcd *uhci, struct usb_device *dev)
{
dma_addr_t dma_handle;
struct uhci_qh *qh;
qh = dma_pool_alloc(uhci->qh_pool, GFP_ATOMIC, &dma_handle);
if (!qh)
return NULL;
qh->dma_handle = dma_handle;
qh->element = UHCI_PTR_TERM;
qh->link = UHCI_PTR_TERM;
qh->dev = dev;
qh->urbp = NULL;
INIT_LIST_HEAD(&qh->list);
INIT_LIST_HEAD(&qh->remove_list);
usb_get_dev(dev);
return qh;
}
static void uhci_free_qh(struct uhci_hcd *uhci, struct uhci_qh *qh)
{
if (!list_empty(&qh->list))
dev_warn(uhci_dev(uhci), "qh %p list not empty!\n", qh);
if (!list_empty(&qh->remove_list))
dev_warn(uhci_dev(uhci), "qh %p still in remove_list!\n", qh);
if (qh->dev)
usb_put_dev(qh->dev);
dma_pool_free(uhci->qh_pool, qh, qh->dma_handle);
}
/*
* Append this urb's qh after the last qh in skelqh->list
*
* Note that urb_priv.queue_list doesn't have a separate queue head;
* it's a ring with every element "live".
*/
static void uhci_insert_qh(struct uhci_hcd *uhci, struct uhci_qh *skelqh, struct urb *urb)
{
struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
struct urb_priv *turbp;
struct uhci_qh *lqh;
/* Grab the last QH */
lqh = list_entry(skelqh->list.prev, struct uhci_qh, list);
/* Point to the next skelqh */
urbp->qh->link = lqh->link;
wmb(); /* Ordering is important */
/*
* Patch QHs for previous endpoint's queued URBs? HC goes
* here next, not to the next skelqh it now points to.
*
* lqh --> td ... --> qh ... --> td --> qh ... --> td
* | | |
* v v v
* +<----------------+-----------------+
* v
* newqh --> td ... --> td
* |
* v
* ...
*
* The HC could see (and use!) any of these as we write them.
*/
lqh->link = cpu_to_le32(urbp->qh->dma_handle) | UHCI_PTR_QH;
if (lqh->urbp) {
list_for_each_entry(turbp, &lqh->urbp->queue_list, queue_list)
turbp->qh->link = lqh->link;
}
list_add_tail(&urbp->qh->list, &skelqh->list);
}
/*
* Start removal of QH from schedule; it finishes next frame.
* TDs should be unlinked before this is called.
*/
static void uhci_remove_qh(struct uhci_hcd *uhci, struct uhci_qh *qh)
{
struct uhci_qh *pqh;
__le32 newlink;
unsigned int age;
if (!qh)
return;
/*
* Only go through the hoops if it's actually linked in
*/
if (!list_empty(&qh->list)) {
/* If our queue is nonempty, make the next URB the head */
if (!list_empty(&qh->urbp->queue_list)) {
struct urb_priv *nurbp;
nurbp = list_entry(qh->urbp->queue_list.next,
struct urb_priv, queue_list);
nurbp->queued = 0;
list_add(&nurbp->qh->list, &qh->list);
newlink = cpu_to_le32(nurbp->qh->dma_handle) | UHCI_PTR_QH;
} else
newlink = qh->link;
/* Fix up the previous QH's queue to link to either
* the new head of this queue or the start of the
* next endpoint's queue. */
pqh = list_entry(qh->list.prev, struct uhci_qh, list);
pqh->link = newlink;
if (pqh->urbp) {
struct urb_priv *turbp;
list_for_each_entry(turbp, &pqh->urbp->queue_list,
queue_list)
turbp->qh->link = newlink;
}
wmb();
/* Leave qh->link in case the HC is on the QH now, it will */
/* continue the rest of the schedule */
qh->element = UHCI_PTR_TERM;
list_del_init(&qh->list);
}
list_del_init(&qh->urbp->queue_list);
qh->urbp = NULL;
age = uhci_get_current_frame_number(uhci);
if (age != uhci->qh_remove_age) {
uhci_free_pending_qhs(uhci);
uhci->qh_remove_age = age;
}
/* Check to see if the remove list is empty. Set the IOC bit */
/* to force an interrupt so we can remove the QH */
if (list_empty(&uhci->qh_remove_list))
uhci_set_next_interrupt(uhci);
list_add(&qh->remove_list, &uhci->qh_remove_list);
}
static int uhci_fixup_toggle(struct urb *urb, unsigned int toggle)
{
struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
struct uhci_td *td;
list_for_each_entry(td, &urbp->td_list, list) {
if (toggle)
td->token |= cpu_to_le32(TD_TOKEN_TOGGLE);
else
td->token &= ~cpu_to_le32(TD_TOKEN_TOGGLE);
toggle ^= 1;
}
return toggle;
}
/* This function will append one URB's QH to another URB's QH. This is for */
/* queuing interrupt, control or bulk transfers */
static void uhci_append_queued_urb(struct uhci_hcd *uhci, struct urb *eurb, struct urb *urb)
{
struct urb_priv *eurbp, *urbp, *furbp, *lurbp;
struct uhci_td *lltd;
eurbp = eurb->hcpriv;
urbp = urb->hcpriv;
/* Find the first URB in the queue */
furbp = eurbp;
if (eurbp->queued) {
list_for_each_entry(furbp, &eurbp->queue_list, queue_list)
if (!furbp->queued)
break;
}
lurbp = list_entry(furbp->queue_list.prev, struct urb_priv, queue_list);
lltd = list_entry(lurbp->td_list.prev, struct uhci_td, list);
/* Control transfers always start with toggle 0 */
if (!usb_pipecontrol(urb->pipe))
usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe),
usb_pipeout(urb->pipe),
uhci_fixup_toggle(urb,
uhci_toggle(td_token(lltd)) ^ 1));
/* All qh's in the queue need to link to the next queue */
urbp->qh->link = eurbp->qh->link;
wmb(); /* Make sure we flush everything */
lltd->link = cpu_to_le32(urbp->qh->dma_handle) | UHCI_PTR_QH;
list_add_tail(&urbp->queue_list, &furbp->queue_list);
urbp->queued = 1;
}
static void uhci_delete_queued_urb(struct uhci_hcd *uhci, struct urb *urb)
{
struct urb_priv *urbp, *nurbp, *purbp, *turbp;
struct uhci_td *pltd;
unsigned int toggle;
urbp = urb->hcpriv;
if (list_empty(&urbp->queue_list))
return;
nurbp = list_entry(urbp->queue_list.next, struct urb_priv, queue_list);
/*
* Fix up the toggle for the following URBs in the queue.
* Only needed for bulk and interrupt: control and isochronous
* endpoints don't propagate toggles between messages.
*/
if (usb_pipebulk(urb->pipe) || usb_pipeint(urb->pipe)) {
if (!urbp->queued)
/* We just set the toggle in uhci_unlink_generic */
toggle = usb_gettoggle(urb->dev,
usb_pipeendpoint(urb->pipe),
usb_pipeout(urb->pipe));
else {
/* If we're in the middle of the queue, grab the */
/* toggle from the TD previous to us */
purbp = list_entry(urbp->queue_list.prev,
struct urb_priv, queue_list);
pltd = list_entry(purbp->td_list.prev,
struct uhci_td, list);
toggle = uhci_toggle(td_token(pltd)) ^ 1;
}
list_for_each_entry(turbp, &urbp->queue_list, queue_list) {
if (!turbp->queued)
break;
toggle = uhci_fixup_toggle(turbp->urb, toggle);
}
usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe),
usb_pipeout(urb->pipe), toggle);
}
if (urbp->queued) {
/* We're somewhere in the middle (or end). The case where
* we're at the head is handled in uhci_remove_qh(). */
purbp = list_entry(urbp->queue_list.prev, struct urb_priv,
queue_list);
pltd = list_entry(purbp->td_list.prev, struct uhci_td, list);
if (nurbp->queued)
pltd->link = cpu_to_le32(nurbp->qh->dma_handle) | UHCI_PTR_QH;
else
/* The next URB happens to be the beginning, so */
/* we're the last, end the chain */
pltd->link = UHCI_PTR_TERM;
}
/* urbp->queue_list is handled in uhci_remove_qh() */
}
static struct urb_priv *uhci_alloc_urb_priv(struct uhci_hcd *uhci, struct urb *urb)
{
struct urb_priv *urbp;
urbp = kmem_cache_alloc(uhci_up_cachep, SLAB_ATOMIC);
if (!urbp)
return NULL;
memset((void *)urbp, 0, sizeof(*urbp));
urbp->inserttime = jiffies;
urbp->fsbrtime = jiffies;
urbp->urb = urb;
INIT_LIST_HEAD(&urbp->td_list);
INIT_LIST_HEAD(&urbp->queue_list);
INIT_LIST_HEAD(&urbp->urb_list);
list_add_tail(&urbp->urb_list, &uhci->urb_list);
urb->hcpriv = urbp;
return urbp;
}
static void uhci_add_td_to_urb(struct urb *urb, struct uhci_td *td)
{
struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
td->urb = urb;
list_add_tail(&td->list, &urbp->td_list);
}
static void uhci_remove_td_from_urb(struct uhci_td *td)
{
if (list_empty(&td->list))
return;
list_del_init(&td->list);
td->urb = NULL;
}
static void uhci_destroy_urb_priv(struct uhci_hcd *uhci, struct urb *urb)
{
struct uhci_td *td, *tmp;
struct urb_priv *urbp;
unsigned int age;
urbp = (struct urb_priv *)urb->hcpriv;
if (!urbp)
return;
if (!list_empty(&urbp->urb_list))
dev_warn(uhci_dev(uhci), "urb %p still on uhci->urb_list "
"or uhci->remove_list!\n", urb);
age = uhci_get_current_frame_number(uhci);
if (age != uhci->td_remove_age) {
uhci_free_pending_tds(uhci);
uhci->td_remove_age = age;
}
/* Check to see if the remove list is empty. Set the IOC bit */
/* to force an interrupt so we can remove the TD's*/
if (list_empty(&uhci->td_remove_list))
uhci_set_next_interrupt(uhci);
list_for_each_entry_safe(td, tmp, &urbp->td_list, list) {
uhci_remove_td_from_urb(td);
uhci_remove_td(uhci, td);
list_add(&td->remove_list, &uhci->td_remove_list);
}
urb->hcpriv = NULL;
kmem_cache_free(uhci_up_cachep, urbp);
}
static void uhci_inc_fsbr(struct uhci_hcd *uhci, struct urb *urb)
{
struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
if ((!(urb->transfer_flags & URB_NO_FSBR)) && !urbp->fsbr) {
urbp->fsbr = 1;
if (!uhci->fsbr++ && !uhci->fsbrtimeout)
uhci->skel_term_qh->link = cpu_to_le32(uhci->skel_fs_control_qh->dma_handle) | UHCI_PTR_QH;
}
}
static void uhci_dec_fsbr(struct uhci_hcd *uhci, struct urb *urb)
{
struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
if ((!(urb->transfer_flags & URB_NO_FSBR)) && urbp->fsbr) {
urbp->fsbr = 0;
if (!--uhci->fsbr)
uhci->fsbrtimeout = jiffies + FSBR_DELAY;
}
}
/*
* Map status to standard result codes
*
* <status> is (td->status & 0xF60000) [a.k.a. uhci_status_bits(td->status)]
* Note: status does not include the TD_CTRL_NAK bit.
* <dir_out> is True for output TDs and False for input TDs.
*/
static int uhci_map_status(int status, int dir_out)
{
if (!status)
return 0;
if (status & TD_CTRL_BITSTUFF) /* Bitstuff error */
return -EPROTO;
if (status & TD_CTRL_CRCTIMEO) { /* CRC/Timeout */
if (dir_out)
return -EPROTO;
else
return -EILSEQ;
}
if (status & TD_CTRL_BABBLE) /* Babble */
return -EOVERFLOW;
if (status & TD_CTRL_DBUFERR) /* Buffer error */
return -ENOSR;
if (status & TD_CTRL_STALLED) /* Stalled */
return -EPIPE;
WARN_ON(status & TD_CTRL_ACTIVE); /* Active */
return 0;
}
/*
* Control transfers
*/
static int uhci_submit_control(struct uhci_hcd *uhci, struct urb *urb, struct urb *eurb)
{
struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
struct uhci_td *td;
struct uhci_qh *qh, *skelqh;
unsigned long destination, status;
int maxsze = usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe));
int len = urb->transfer_buffer_length;
dma_addr_t data = urb->transfer_dma;
/* The "pipe" thing contains the destination in bits 8--18 */
destination = (urb->pipe & PIPE_DEVEP_MASK) | USB_PID_SETUP;
/* 3 errors */
status = TD_CTRL_ACTIVE | uhci_maxerr(3);
if (urb->dev->speed == USB_SPEED_LOW)
status |= TD_CTRL_LS;
/*
* Build the TD for the control request setup packet
*/
td = uhci_alloc_td(uhci, urb->dev);
if (!td)
return -ENOMEM;
uhci_add_td_to_urb(urb, td);
uhci_fill_td(td, status, destination | uhci_explen(7),
urb->setup_dma);
/*
* If direction is "send", change the packet ID from SETUP (0x2D)
* to OUT (0xE1). Else change it from SETUP to IN (0x69) and
* set Short Packet Detect (SPD) for all data packets.
*/
if (usb_pipeout(urb->pipe))
destination ^= (USB_PID_SETUP ^ USB_PID_OUT);
else {
destination ^= (USB_PID_SETUP ^ USB_PID_IN);
status |= TD_CTRL_SPD;
}
/*
* Build the DATA TD's
*/
while (len > 0) {
int pktsze = len;
if (pktsze > maxsze)
pktsze = maxsze;
td = uhci_alloc_td(uhci, urb->dev);
if (!td)
return -ENOMEM;
/* Alternate Data0/1 (start with Data1) */
destination ^= TD_TOKEN_TOGGLE;
uhci_add_td_to_urb(urb, td);
uhci_fill_td(td, status, destination | uhci_explen(pktsze - 1),
data);
data += pktsze;
len -= pktsze;
}
/*
* Build the final TD for control status
*/
td = uhci_alloc_td(uhci, urb->dev);
if (!td)
return -ENOMEM;
/*
* It's IN if the pipe is an output pipe or we're not expecting
* data back.
*/
destination &= ~TD_TOKEN_PID_MASK;
if (usb_pipeout(urb->pipe) || !urb->transfer_buffer_length)
destination |= USB_PID_IN;
else
destination |= USB_PID_OUT;
destination |= TD_TOKEN_TOGGLE; /* End in Data1 */
status &= ~TD_CTRL_SPD;
uhci_add_td_to_urb(urb, td);
uhci_fill_td(td, status | TD_CTRL_IOC,
destination | uhci_explen(UHCI_NULL_DATA_SIZE), 0);
qh = uhci_alloc_qh(uhci, urb->dev);
if (!qh)
return -ENOMEM;
urbp->qh = qh;
qh->urbp = urbp;
uhci_insert_tds_in_qh(qh, urb, UHCI_PTR_BREADTH);
/* Low-speed transfers get a different queue, and won't hog the bus.
* Also, some devices enumerate better without FSBR; the easiest way
* to do that is to put URBs on the low-speed queue while the device
* is in the DEFAULT state. */
if (urb->dev->speed == USB_SPEED_LOW ||
urb->dev->state == USB_STATE_DEFAULT)
skelqh = uhci->skel_ls_control_qh;
else {
skelqh = uhci->skel_fs_control_qh;
uhci_inc_fsbr(uhci, urb);
}
if (eurb)
uhci_append_queued_urb(uhci, eurb, urb);
else
uhci_insert_qh(uhci, skelqh, urb);
return -EINPROGRESS;
}
/*
* If control-IN transfer was short, the status packet wasn't sent.
* This routine changes the element pointer in the QH to point at the
* status TD. It's safe to do this even while the QH is live, because
* the hardware only updates the element pointer following a successful
* transfer. The inactive TD for the short packet won't cause an update,
* so the pointer won't get overwritten. The next time the controller
* sees this QH, it will send the status packet.
*/
static int usb_control_retrigger_status(struct uhci_hcd *uhci, struct urb *urb)
{
struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
struct uhci_td *td;
urbp->short_control_packet = 1;
td = list_entry(urbp->td_list.prev, struct uhci_td, list);
urbp->qh->element = cpu_to_le32(td->dma_handle);
return -EINPROGRESS;
}
static int uhci_result_control(struct uhci_hcd *uhci, struct urb *urb)
{
struct list_head *tmp, *head;
struct urb_priv *urbp = urb->hcpriv;
struct uhci_td *td;
unsigned int status;
int ret = 0;
if (list_empty(&urbp->td_list))
return -EINVAL;
head = &urbp->td_list;
if (urbp->short_control_packet) {
tmp = head->prev;
goto status_stage;
}
tmp = head->next;
td = list_entry(tmp, struct uhci_td, list);
/* The first TD is the SETUP stage, check the status, but skip */
/* the count */
status = uhci_status_bits(td_status(td));
if (status & TD_CTRL_ACTIVE)
return -EINPROGRESS;
if (status)
goto td_error;
urb->actual_length = 0;
/* The rest of the TD's (but the last) are data */
tmp = tmp->next;
while (tmp != head && tmp->next != head) {
td = list_entry(tmp, struct uhci_td, list);
tmp = tmp->next;
status = uhci_status_bits(td_status(td));
if (status & TD_CTRL_ACTIVE)
return -EINPROGRESS;
urb->actual_length += uhci_actual_length(td_status(td));
if (status)
goto td_error;
/* Check to see if we received a short packet */
if (uhci_actual_length(td_status(td)) < uhci_expected_length(td_token(td))) {
if (urb->transfer_flags & URB_SHORT_NOT_OK) {
ret = -EREMOTEIO;
goto err;
}
if (uhci_packetid(td_token(td)) == USB_PID_IN)
return usb_control_retrigger_status(uhci, urb);
else
return 0;
}
}
status_stage:
td = list_entry(tmp, struct uhci_td, list);
/* Control status stage */
status = td_status(td);
#ifdef I_HAVE_BUGGY_APC_BACKUPS
/* APC BackUPS Pro kludge */
/* It tries to send all of the descriptor instead of the amount */
/* we requested */
if (status & TD_CTRL_IOC && /* IOC is masked out by uhci_status_bits */
status & TD_CTRL_ACTIVE &&
status & TD_CTRL_NAK)
return 0;
#endif
status = uhci_status_bits(status);
if (status & TD_CTRL_ACTIVE)
return -EINPROGRESS;
if (status)
goto td_error;
return 0;
td_error:
ret = uhci_map_status(status, uhci_packetout(td_token(td)));
err:
if ((debug == 1 && ret != -EPIPE) || debug > 1) {
/* Some debugging code */
dev_dbg(uhci_dev(uhci), "%s: failed with status %x\n",
__FUNCTION__, status);
if (errbuf) {
/* Print the chain for debugging purposes */
uhci_show_qh(urbp->qh, errbuf, ERRBUF_LEN, 0);
lprintk(errbuf);
}
}
return ret;
}
/*
* Common submit for bulk and interrupt
*/
static int uhci_submit_common(struct uhci_hcd *uhci, struct urb *urb, struct urb *eurb, struct uhci_qh *skelqh)
{
struct uhci_td *td;
struct uhci_qh *qh;
unsigned long destination, status;
int maxsze = usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe));
int len = urb->transfer_buffer_length;
struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
dma_addr_t data = urb->transfer_dma;
if (len < 0)
return -EINVAL;
/* The "pipe" thing contains the destination in bits 8--18 */
destination = (urb->pipe & PIPE_DEVEP_MASK) | usb_packetid(urb->pipe);
status = uhci_maxerr(3) | TD_CTRL_ACTIVE;
if (urb->dev->speed == USB_SPEED_LOW)
status |= TD_CTRL_LS;
if (usb_pipein(urb->pipe))
status |= TD_CTRL_SPD;
/*
* Build the DATA TD's
*/
do { /* Allow zero length packets */
int pktsze = maxsze;
if (pktsze >= len) {
pktsze = len;
if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
status &= ~TD_CTRL_SPD;
}
td = uhci_alloc_td(uhci, urb->dev);
if (!td)
return -ENOMEM;
uhci_add_td_to_urb(urb, td);
uhci_fill_td(td, status, destination | uhci_explen(pktsze - 1) |
(usb_gettoggle(urb->dev, usb_pipeendpoint(urb->pipe),
usb_pipeout(urb->pipe)) << TD_TOKEN_TOGGLE_SHIFT),
data);
data += pktsze;
len -= maxsze;
usb_dotoggle(urb->dev, usb_pipeendpoint(urb->pipe),
usb_pipeout(urb->pipe));
} while (len > 0);
/*
* URB_ZERO_PACKET means adding a 0-length packet, if direction
* is OUT and the transfer_length was an exact multiple of maxsze,
* hence (len = transfer_length - N * maxsze) == 0
* however, if transfer_length == 0, the zero packet was already
* prepared above.
*/
if (usb_pipeout(urb->pipe) && (urb->transfer_flags & URB_ZERO_PACKET) &&
!len && urb->transfer_buffer_length) {
td = uhci_alloc_td(uhci, urb->dev);
if (!td)
return -ENOMEM;
uhci_add_td_to_urb(urb, td);
uhci_fill_td(td, status, destination | uhci_explen(UHCI_NULL_DATA_SIZE) |
(usb_gettoggle(urb->dev, usb_pipeendpoint(urb->pipe),
usb_pipeout(urb->pipe)) << TD_TOKEN_TOGGLE_SHIFT),
data);
usb_dotoggle(urb->dev, usb_pipeendpoint(urb->pipe),
usb_pipeout(urb->pipe));
}
/* Set the interrupt-on-completion flag on the last packet.
* A more-or-less typical 4 KB URB (= size of one memory page)
* will require about 3 ms to transfer; that's a little on the
* fast side but not enough to justify delaying an interrupt
* more than 2 or 3 URBs, so we will ignore the URB_NO_INTERRUPT
* flag setting. */
td->status |= cpu_to_le32(TD_CTRL_IOC);
qh = uhci_alloc_qh(uhci, urb->dev);
if (!qh)
return -ENOMEM;
urbp->qh = qh;
qh->urbp = urbp;
/* Always breadth first */
uhci_insert_tds_in_qh(qh, urb, UHCI_PTR_BREADTH);
if (eurb)
uhci_append_queued_urb(uhci, eurb, urb);
else
uhci_insert_qh(uhci, skelqh, urb);
return -EINPROGRESS;
}
/*
* Common result for bulk and interrupt
*/
static int uhci_result_common(struct uhci_hcd *uhci, struct urb *urb)
{
struct urb_priv *urbp = urb->hcpriv;
struct uhci_td *td;
unsigned int status = 0;
int ret = 0;
urb->actual_length = 0;
list_for_each_entry(td, &urbp->td_list, list) {
status = uhci_status_bits(td_status(td));
if (status & TD_CTRL_ACTIVE)
return -EINPROGRESS;
urb->actual_length += uhci_actual_length(td_status(td));
if (status)
goto td_error;
if (uhci_actual_length(td_status(td)) < uhci_expected_length(td_token(td))) {
if (urb->transfer_flags & URB_SHORT_NOT_OK) {
ret = -EREMOTEIO;
goto err;
} else
return 0;
}
}
return 0;
td_error:
ret = uhci_map_status(status, uhci_packetout(td_token(td)));
err:
/*
* Enable this chunk of code if you want to see some more debugging.
* But be careful, it has the tendancy to starve out khubd and prevent
* disconnects from happening successfully if you have a slow debug
* log interface (like a serial console.
*/
#if 0
if ((debug == 1 && ret != -EPIPE) || debug > 1) {
/* Some debugging code */
dev_dbg(uhci_dev(uhci), "%s: failed with status %x\n",
__FUNCTION__, status);
if (errbuf) {
/* Print the chain for debugging purposes */
uhci_show_qh(urbp->qh, errbuf, ERRBUF_LEN, 0);
lprintk(errbuf);
}
}
#endif
return ret;
}
static inline int uhci_submit_bulk(struct uhci_hcd *uhci, struct urb *urb, struct urb *eurb)
{
int ret;
/* Can't have low-speed bulk transfers */
if (urb->dev->speed == USB_SPEED_LOW)
return -EINVAL;
ret = uhci_submit_common(uhci, urb, eurb, uhci->skel_bulk_qh);
if (ret == -EINPROGRESS)
uhci_inc_fsbr(uhci, urb);
return ret;
}
static inline int uhci_submit_interrupt(struct uhci_hcd *uhci, struct urb *urb, struct urb *eurb)
{
/* USB 1.1 interrupt transfers only involve one packet per interval;
* that's the uhci_submit_common() "breadth first" policy. Drivers
* can submit urbs of any length, but longer ones might need many
* intervals to complete.
*/
return uhci_submit_common(uhci, urb, eurb, uhci->skelqh[__interval_to_skel(urb->interval)]);
}
/*
* Isochronous transfers
*/
static int isochronous_find_limits(struct uhci_hcd *uhci, struct urb *urb, unsigned int *start, unsigned int *end)
{
struct urb *last_urb = NULL;
struct urb_priv *up;
int ret = 0;
list_for_each_entry(up, &uhci->urb_list, urb_list) {
struct urb *u = up->urb;
/* look for pending URB's with identical pipe handle */
if ((urb->pipe == u->pipe) && (urb->dev == u->dev) &&
(u->status == -EINPROGRESS) && (u != urb)) {
if (!last_urb)
*start = u->start_frame;
last_urb = u;
}
}
if (last_urb) {
*end = (last_urb->start_frame + last_urb->number_of_packets *
last_urb->interval) & (UHCI_NUMFRAMES-1);
ret = 0;
} else
ret = -1; /* no previous urb found */
return ret;
}
static int isochronous_find_start(struct uhci_hcd *uhci, struct urb *urb)
{
int limits;
unsigned int start = 0, end = 0;
if (urb->number_of_packets > 900) /* 900? Why? */
return -EFBIG;
limits = isochronous_find_limits(uhci, urb, &start, &end);
if (urb->transfer_flags & URB_ISO_ASAP) {
if (limits)
urb->start_frame =
(uhci_get_current_frame_number(uhci) +
10) & (UHCI_NUMFRAMES - 1);
else
urb->start_frame = end;
} else {
urb->start_frame &= (UHCI_NUMFRAMES - 1);
/* FIXME: Sanity check */
}
return 0;
}
/*
* Isochronous transfers
*/
static int uhci_submit_isochronous(struct uhci_hcd *uhci, struct urb *urb)
{
struct uhci_td *td;
int i, ret, frame;
int status, destination;
status = TD_CTRL_ACTIVE | TD_CTRL_IOS;
destination = (urb->pipe & PIPE_DEVEP_MASK) | usb_packetid(urb->pipe);
ret = isochronous_find_start(uhci, urb);
if (ret)
return ret;
frame = urb->start_frame;
for (i = 0; i < urb->number_of_packets; i++, frame += urb->interval) {
if (!urb->iso_frame_desc[i].length)
continue;
td = uhci_alloc_td(uhci, urb->dev);
if (!td)
return -ENOMEM;
uhci_add_td_to_urb(urb, td);
uhci_fill_td(td, status, destination | uhci_explen(urb->iso_frame_desc[i].length - 1),
urb->transfer_dma + urb->iso_frame_desc[i].offset);
if (i + 1 >= urb->number_of_packets)
td->status |= cpu_to_le32(TD_CTRL_IOC);
uhci_insert_td_frame_list(uhci, td, frame);
}
return -EINPROGRESS;
}
static int uhci_result_isochronous(struct uhci_hcd *uhci, struct urb *urb)
{
struct uhci_td *td;
struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
int status;
int i, ret = 0;
urb->actual_length = 0;
i = 0;
list_for_each_entry(td, &urbp->td_list, list) {
int actlength;
if (td_status(td) & TD_CTRL_ACTIVE)
return -EINPROGRESS;
actlength = uhci_actual_length(td_status(td));
urb->iso_frame_desc[i].actual_length = actlength;
urb->actual_length += actlength;
status = uhci_map_status(uhci_status_bits(td_status(td)),
usb_pipeout(urb->pipe));
urb->iso_frame_desc[i].status = status;
if (status) {
urb->error_count++;
ret = status;
}
i++;
}
return ret;
}
static struct urb *uhci_find_urb_ep(struct uhci_hcd *uhci, struct urb *urb)
{
struct urb_priv *up;
/* We don't match Isoc transfers since they are special */
if (usb_pipeisoc(urb->pipe))
return NULL;
list_for_each_entry(up, &uhci->urb_list, urb_list) {
struct urb *u = up->urb;
if (u->dev == urb->dev && u->status == -EINPROGRESS) {
/* For control, ignore the direction */
if (usb_pipecontrol(urb->pipe) &&
(u->pipe & ~USB_DIR_IN) == (urb->pipe & ~USB_DIR_IN))
return u;
else if (u->pipe == urb->pipe)
return u;
}
}
return NULL;
}
static int uhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, int mem_flags)
{
int ret;
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
unsigned long flags;
struct urb *eurb;
int bustime;
spin_lock_irqsave(&uhci->schedule_lock, flags);
ret = urb->status;
if (ret != -EINPROGRESS) /* URB already unlinked! */
goto out;
eurb = uhci_find_urb_ep(uhci, urb);
if (!uhci_alloc_urb_priv(uhci, urb)) {
ret = -ENOMEM;
goto out;
}
switch (usb_pipetype(urb->pipe)) {
case PIPE_CONTROL:
ret = uhci_submit_control(uhci, urb, eurb);
break;
case PIPE_INTERRUPT:
if (!eurb) {
bustime = usb_check_bandwidth(urb->dev, urb);
if (bustime < 0)
ret = bustime;
else {
ret = uhci_submit_interrupt(uhci, urb, eurb);
if (ret == -EINPROGRESS)
usb_claim_bandwidth(urb->dev, urb, bustime, 0);
}
} else { /* inherit from parent */
urb->bandwidth = eurb->bandwidth;
ret = uhci_submit_interrupt(uhci, urb, eurb);
}
break;
case PIPE_BULK:
ret = uhci_submit_bulk(uhci, urb, eurb);
break;
case PIPE_ISOCHRONOUS:
bustime = usb_check_bandwidth(urb->dev, urb);
if (bustime < 0) {
ret = bustime;
break;
}
ret = uhci_submit_isochronous(uhci, urb);
if (ret == -EINPROGRESS)
usb_claim_bandwidth(urb->dev, urb, bustime, 1);
break;
}
if (ret != -EINPROGRESS) {
/* Submit failed, so delete it from the urb_list */
struct urb_priv *urbp = urb->hcpriv;
list_del_init(&urbp->urb_list);
uhci_destroy_urb_priv(uhci, urb);
} else
ret = 0;
out:
spin_unlock_irqrestore(&uhci->schedule_lock, flags);
return ret;
}
/*
* Return the result of a transfer
*/
static void uhci_transfer_result(struct uhci_hcd *uhci, struct urb *urb)
{
int ret = -EINPROGRESS;
struct urb_priv *urbp;
spin_lock(&urb->lock);
urbp = (struct urb_priv *)urb->hcpriv;
if (urb->status != -EINPROGRESS) /* URB already dequeued */
goto out;
switch (usb_pipetype(urb->pipe)) {
case PIPE_CONTROL:
ret = uhci_result_control(uhci, urb);
break;
case PIPE_BULK:
case PIPE_INTERRUPT:
ret = uhci_result_common(uhci, urb);
break;
case PIPE_ISOCHRONOUS:
ret = uhci_result_isochronous(uhci, urb);
break;
}
if (ret == -EINPROGRESS)
goto out;
urb->status = ret;
switch (usb_pipetype(urb->pipe)) {
case PIPE_CONTROL:
case PIPE_BULK:
case PIPE_ISOCHRONOUS:
/* Release bandwidth for Interrupt or Isoc. transfers */
if (urb->bandwidth)
usb_release_bandwidth(urb->dev, urb, 1);
uhci_unlink_generic(uhci, urb);
break;
case PIPE_INTERRUPT:
/* Release bandwidth for Interrupt or Isoc. transfers */
/* Make sure we don't release if we have a queued URB */
if (list_empty(&urbp->queue_list) && urb->bandwidth)
usb_release_bandwidth(urb->dev, urb, 0);
else
/* bandwidth was passed on to queued URB, */
/* so don't let usb_unlink_urb() release it */
urb->bandwidth = 0;
uhci_unlink_generic(uhci, urb);
break;
default:
dev_info(uhci_dev(uhci), "%s: unknown pipe type %d "
"for urb %p\n",
__FUNCTION__, usb_pipetype(urb->pipe), urb);
}
/* Move it from uhci->urb_list to uhci->complete_list */
uhci_moveto_complete(uhci, urbp);
out:
spin_unlock(&urb->lock);
}
static void uhci_unlink_generic(struct uhci_hcd *uhci, struct urb *urb)
{
struct list_head *head;
struct uhci_td *td;
struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
int prevactive = 0;
uhci_dec_fsbr(uhci, urb); /* Safe since it checks */
/*
* Now we need to find out what the last successful toggle was
* so we can update the local data toggle for the next transfer
*
* There are 2 ways the last successful completed TD is found:
*
* 1) The TD is NOT active and the actual length < expected length
* 2) The TD is NOT active and it's the last TD in the chain
*
* and a third way the first uncompleted TD is found:
*
* 3) The TD is active and the previous TD is NOT active
*
* Control and Isochronous ignore the toggle, so this is safe
* for all types
*
* FIXME: The toggle fixups won't be 100% reliable until we
* change over to using a single queue for each endpoint and
* stop the queue before unlinking.
*/
head = &urbp->td_list;
list_for_each_entry(td, head, list) {
if (!(td_status(td) & TD_CTRL_ACTIVE) &&
(uhci_actual_length(td_status(td)) <
uhci_expected_length(td_token(td)) ||
td->list.next == head))
usb_settoggle(urb->dev, uhci_endpoint(td_token(td)),
uhci_packetout(td_token(td)),
uhci_toggle(td_token(td)) ^ 1);
else if ((td_status(td) & TD_CTRL_ACTIVE) && !prevactive)
usb_settoggle(urb->dev, uhci_endpoint(td_token(td)),
uhci_packetout(td_token(td)),
uhci_toggle(td_token(td)));
prevactive = td_status(td) & TD_CTRL_ACTIVE;
}
uhci_delete_queued_urb(uhci, urb);
/* The interrupt loop will reclaim the QH's */
uhci_remove_qh(uhci, urbp->qh);
urbp->qh = NULL;
}
static int uhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb)
{
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
unsigned long flags;
struct urb_priv *urbp;
unsigned int age;
spin_lock_irqsave(&uhci->schedule_lock, flags);
urbp = urb->hcpriv;
if (!urbp) /* URB was never linked! */
goto done;
list_del_init(&urbp->urb_list);
uhci_unlink_generic(uhci, urb);
age = uhci_get_current_frame_number(uhci);
if (age != uhci->urb_remove_age) {
uhci_remove_pending_urbps(uhci);
uhci->urb_remove_age = age;
}
/* If we're the first, set the next interrupt bit */
if (list_empty(&uhci->urb_remove_list))
uhci_set_next_interrupt(uhci);
list_add_tail(&urbp->urb_list, &uhci->urb_remove_list);
done:
spin_unlock_irqrestore(&uhci->schedule_lock, flags);
return 0;
}
static int uhci_fsbr_timeout(struct uhci_hcd *uhci, struct urb *urb)
{
struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv;
struct list_head *head;
struct uhci_td *td;
int count = 0;
uhci_dec_fsbr(uhci, urb);
urbp->fsbr_timeout = 1;
/*
* Ideally we would want to fix qh->element as well, but it's
* read/write by the HC, so that can introduce a race. It's not
* really worth the hassle
*/
head = &urbp->td_list;
list_for_each_entry(td, head, list) {
/*
* Make sure we don't do the last one (since it'll have the
* TERM bit set) as well as we skip every so many TD's to
* make sure it doesn't hog the bandwidth
*/
if (td->list.next != head && (count % DEPTH_INTERVAL) ==
(DEPTH_INTERVAL - 1))
td->link |= UHCI_PTR_DEPTH;
count++;
}
return 0;
}
/*
* uhci_get_current_frame_number()
*
* returns the current frame number for a USB bus/controller.
*/
static unsigned int uhci_get_current_frame_number(struct uhci_hcd *uhci)
{
return inw(uhci->io_addr + USBFRNUM);
}
static int init_stall_timer(struct usb_hcd *hcd);
static void stall_callback(unsigned long ptr)
{
struct usb_hcd *hcd = (struct usb_hcd *)ptr;
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
struct urb_priv *up;
unsigned long flags;
int called_uhci_finish_completion = 0;
spin_lock_irqsave(&uhci->schedule_lock, flags);
if (!list_empty(&uhci->urb_remove_list) &&
uhci_get_current_frame_number(uhci) != uhci->urb_remove_age) {
uhci_remove_pending_urbps(uhci);
uhci_finish_completion(hcd, NULL);
called_uhci_finish_completion = 1;
}
list_for_each_entry(up, &uhci->urb_list, urb_list) {
struct urb *u = up->urb;
spin_lock(&u->lock);
/* Check if the FSBR timed out */
if (up->fsbr && !up->fsbr_timeout && time_after_eq(jiffies, up->fsbrtime + IDLE_TIMEOUT))
uhci_fsbr_timeout(uhci, u);
spin_unlock(&u->lock);
}
spin_unlock_irqrestore(&uhci->schedule_lock, flags);
/* Wake up anyone waiting for an URB to complete */
if (called_uhci_finish_completion)
wake_up_all(&uhci->waitqh);
/* Really disable FSBR */
if (!uhci->fsbr && uhci->fsbrtimeout && time_after_eq(jiffies, uhci->fsbrtimeout)) {
uhci->fsbrtimeout = 0;
uhci->skel_term_qh->link = UHCI_PTR_TERM;
}
/* Poll for and perform state transitions */
hc_state_transitions(uhci);
if (unlikely(uhci->suspended_ports && uhci->state != UHCI_SUSPENDED))
uhci_check_resume(uhci);
init_stall_timer(hcd);
}
static int init_stall_timer(struct usb_hcd *hcd)
{
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
init_timer(&uhci->stall_timer);
uhci->stall_timer.function = stall_callback;
uhci->stall_timer.data = (unsigned long)hcd;
uhci->stall_timer.expires = jiffies + msecs_to_jiffies(100);
add_timer(&uhci->stall_timer);
return 0;
}
static void uhci_free_pending_qhs(struct uhci_hcd *uhci)
{
struct uhci_qh *qh, *tmp;
list_for_each_entry_safe(qh, tmp, &uhci->qh_remove_list, remove_list) {
list_del_init(&qh->remove_list);
uhci_free_qh(uhci, qh);
}
}
static void uhci_free_pending_tds(struct uhci_hcd *uhci)
{
struct uhci_td *td, *tmp;
list_for_each_entry_safe(td, tmp, &uhci->td_remove_list, remove_list) {
list_del_init(&td->remove_list);
uhci_free_td(uhci, td);
}
}
static void
uhci_finish_urb(struct usb_hcd *hcd, struct urb *urb, struct pt_regs *regs)
__releases(uhci->schedule_lock)
__acquires(uhci->schedule_lock)
{
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
uhci_destroy_urb_priv(uhci, urb);
spin_unlock(&uhci->schedule_lock);
usb_hcd_giveback_urb(hcd, urb, regs);
spin_lock(&uhci->schedule_lock);
}
static void uhci_finish_completion(struct usb_hcd *hcd, struct pt_regs *regs)
{
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
struct urb_priv *urbp, *tmp;
list_for_each_entry_safe(urbp, tmp, &uhci->complete_list, urb_list) {
struct urb *urb = urbp->urb;
list_del_init(&urbp->urb_list);
uhci_finish_urb(hcd, urb, regs);
}
}
static void uhci_remove_pending_urbps(struct uhci_hcd *uhci)
{
/* Splice the urb_remove_list onto the end of the complete_list */
list_splice_init(&uhci->urb_remove_list, uhci->complete_list.prev);
}
static irqreturn_t uhci_irq(struct usb_hcd *hcd, struct pt_regs *regs)
{
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
unsigned long io_addr = uhci->io_addr;
unsigned short status;
struct urb_priv *urbp, *tmp;
unsigned int age;
/*
* Read the interrupt status, and write it back to clear the
* interrupt cause. Contrary to the UHCI specification, the
* "HC Halted" status bit is persistent: it is RO, not R/WC.
*/
status = inw(io_addr + USBSTS);
if (!(status & ~USBSTS_HCH)) /* shared interrupt, not mine */
return IRQ_NONE;
outw(status, io_addr + USBSTS); /* Clear it */
if (status & ~(USBSTS_USBINT | USBSTS_ERROR | USBSTS_RD)) {
if (status & USBSTS_HSE)
dev_err(uhci_dev(uhci), "host system error, "
"PCI problems?\n");
if (status & USBSTS_HCPE)
dev_err(uhci_dev(uhci), "host controller process "
"error, something bad happened!\n");
if ((status & USBSTS_HCH) && uhci->state > 0) {
dev_err(uhci_dev(uhci), "host controller halted, "
"very bad!\n");
/* FIXME: Reset the controller, fix the offending TD */
}
}
if (status & USBSTS_RD)
uhci->resume_detect = 1;
spin_lock(&uhci->schedule_lock);
age = uhci_get_current_frame_number(uhci);
if (age != uhci->qh_remove_age)
uhci_free_pending_qhs(uhci);
if (age != uhci->td_remove_age)
uhci_free_pending_tds(uhci);
if (age != uhci->urb_remove_age)
uhci_remove_pending_urbps(uhci);
if (list_empty(&uhci->urb_remove_list) &&
list_empty(&uhci->td_remove_list) &&
list_empty(&uhci->qh_remove_list))
uhci_clear_next_interrupt(uhci);
else
uhci_set_next_interrupt(uhci);
/* Walk the list of pending URBs to see which ones completed
* (must be _safe because uhci_transfer_result() dequeues URBs) */
list_for_each_entry_safe(urbp, tmp, &uhci->urb_list, urb_list) {
struct urb *urb = urbp->urb;
/* Checks the status and does all of the magic necessary */
uhci_transfer_result(uhci, urb);
}
uhci_finish_completion(hcd, regs);
spin_unlock(&uhci->schedule_lock);
/* Wake up anyone waiting for an URB to complete */
wake_up_all(&uhci->waitqh);
return IRQ_HANDLED;
}
static void reset_hc(struct uhci_hcd *uhci)
{
unsigned long io_addr = uhci->io_addr;
/* Turn off PIRQ, SMI, and all interrupts. This also turns off
* the BIOS's USB Legacy Support.
*/
pci_write_config_word(to_pci_dev(uhci_dev(uhci)), USBLEGSUP, 0);
outw(0, uhci->io_addr + USBINTR);
/* Global reset for 50ms */
uhci->state = UHCI_RESET;
outw(USBCMD_GRESET, io_addr + USBCMD);
msleep(50);
outw(0, io_addr + USBCMD);
/* Another 10ms delay */
msleep(10);
uhci->resume_detect = 0;
}
static void suspend_hc(struct uhci_hcd *uhci)
{
unsigned long io_addr = uhci->io_addr;
dev_dbg(uhci_dev(uhci), "%s\n", __FUNCTION__);
uhci->state = UHCI_SUSPENDED;
uhci->resume_detect = 0;
outw(USBCMD_EGSM, io_addr + USBCMD);
}
static void wakeup_hc(struct uhci_hcd *uhci)
{
unsigned long io_addr = uhci->io_addr;
switch (uhci->state) {
case UHCI_SUSPENDED: /* Start the resume */
dev_dbg(uhci_dev(uhci), "%s\n", __FUNCTION__);
/* Global resume for >= 20ms */
outw(USBCMD_FGR | USBCMD_EGSM, io_addr + USBCMD);
uhci->state = UHCI_RESUMING_1;
uhci->state_end = jiffies + msecs_to_jiffies(20);
break;
case UHCI_RESUMING_1: /* End global resume */
uhci->state = UHCI_RESUMING_2;
outw(0, io_addr + USBCMD);
/* Falls through */
case UHCI_RESUMING_2: /* Wait for EOP to be sent */
if (inw(io_addr + USBCMD) & USBCMD_FGR)
break;
/* Run for at least 1 second, and
* mark it configured with a 64-byte max packet */
uhci->state = UHCI_RUNNING_GRACE;
uhci->state_end = jiffies + HZ;
outw(USBCMD_RS | USBCMD_CF | USBCMD_MAXP,
io_addr + USBCMD);
break;
case UHCI_RUNNING_GRACE: /* Now allowed to suspend */
uhci->state = UHCI_RUNNING;
break;
default:
break;
}
}
static int ports_active(struct uhci_hcd *uhci)
{
unsigned long io_addr = uhci->io_addr;
int connection = 0;
int i;
for (i = 0; i < uhci->rh_numports; i++)
connection |= (inw(io_addr + USBPORTSC1 + i * 2) & USBPORTSC_CCS);
return connection;
}
static int suspend_allowed(struct uhci_hcd *uhci)
{
unsigned long io_addr = uhci->io_addr;
int i;
if (to_pci_dev(uhci_dev(uhci))->vendor != PCI_VENDOR_ID_INTEL)
return 1;
/* Some of Intel's USB controllers have a bug that causes false
* resume indications if any port has an over current condition.
* To prevent problems, we will not allow a global suspend if
* any ports are OC.
*
* Some motherboards using Intel's chipsets (but not using all
* the USB ports) appear to hardwire the over current inputs active
* to disable the USB ports.
*/
/* check for over current condition on any port */
for (i = 0; i < uhci->rh_numports; i++) {
if (inw(io_addr + USBPORTSC1 + i * 2) & USBPORTSC_OC)
return 0;
}
return 1;
}
static void hc_state_transitions(struct uhci_hcd *uhci)
{
switch (uhci->state) {
case UHCI_RUNNING:
/* global suspend if nothing connected for 1 second */
if (!ports_active(uhci) && suspend_allowed(uhci)) {
uhci->state = UHCI_SUSPENDING_GRACE;
uhci->state_end = jiffies + HZ;
}
break;
case UHCI_SUSPENDING_GRACE:
if (ports_active(uhci))
uhci->state = UHCI_RUNNING;
else if (time_after_eq(jiffies, uhci->state_end))
suspend_hc(uhci);
break;
case UHCI_SUSPENDED:
/* wakeup if requested by a device */
if (uhci->resume_detect)
wakeup_hc(uhci);
break;
case UHCI_RESUMING_1:
case UHCI_RESUMING_2:
case UHCI_RUNNING_GRACE:
if (time_after_eq(jiffies, uhci->state_end))
wakeup_hc(uhci);
break;
default:
break;
}
}
static int start_hc(struct uhci_hcd *uhci)
{
unsigned long io_addr = uhci->io_addr;
int timeout = 10;
/*
* Reset the HC - this will force us to get a
* new notification of any already connected
* ports due to the virtual disconnect that it
* implies.
*/
outw(USBCMD_HCRESET, io_addr + USBCMD);
while (inw(io_addr + USBCMD) & USBCMD_HCRESET) {
if (--timeout < 0) {
dev_err(uhci_dev(uhci), "USBCMD_HCRESET timed out!\n");
return -ETIMEDOUT;
}
msleep(1);
}
/* Turn on PIRQ and all interrupts */
pci_write_config_word(to_pci_dev(uhci_dev(uhci)), USBLEGSUP,
USBLEGSUP_DEFAULT);
outw(USBINTR_TIMEOUT | USBINTR_RESUME | USBINTR_IOC | USBINTR_SP,
io_addr + USBINTR);
/* Start at frame 0 */
outw(0, io_addr + USBFRNUM);
outl(uhci->fl->dma_handle, io_addr + USBFLBASEADD);
/* Run and mark it configured with a 64-byte max packet */
uhci->state = UHCI_RUNNING_GRACE;
uhci->state_end = jiffies + HZ;
outw(USBCMD_RS | USBCMD_CF | USBCMD_MAXP, io_addr + USBCMD);
uhci->hcd.state = USB_STATE_RUNNING;
return 0;
}
/*
* De-allocate all resources..
*/
static void release_uhci(struct uhci_hcd *uhci)
{
int i;
for (i = 0; i < UHCI_NUM_SKELQH; i++)
if (uhci->skelqh[i]) {
uhci_free_qh(uhci, uhci->skelqh[i]);
uhci->skelqh[i] = NULL;
}
if (uhci->term_td) {
uhci_free_td(uhci, uhci->term_td);
uhci->term_td = NULL;
}
if (uhci->qh_pool) {
dma_pool_destroy(uhci->qh_pool);
uhci->qh_pool = NULL;
}
if (uhci->td_pool) {
dma_pool_destroy(uhci->td_pool);
uhci->td_pool = NULL;
}
if (uhci->fl) {
dma_free_coherent(uhci_dev(uhci), sizeof(*uhci->fl),
uhci->fl, uhci->fl->dma_handle);
uhci->fl = NULL;
}
#ifdef CONFIG_PROC_FS
if (uhci->proc_entry) {
remove_proc_entry(uhci->hcd.self.bus_name, uhci_proc_root);
uhci->proc_entry = NULL;
}
#endif
}
static int uhci_reset(struct usb_hcd *hcd)
{
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
uhci->io_addr = (unsigned long) hcd->regs;
/* Kick BIOS off this hardware and reset, so we won't get
* interrupts from any previous setup.
*/
reset_hc(uhci);
return 0;
}
/*
* Allocate a frame list, and then setup the skeleton
*
* The hardware doesn't really know any difference
* in the queues, but the order does matter for the
* protocols higher up. The order is:
*
* - any isochronous events handled before any
* of the queues. We don't do that here, because
* we'll create the actual TD entries on demand.
* - The first queue is the interrupt queue.
* - The second queue is the control queue, split into low- and full-speed
* - The third queue is bulk queue.
* - The fourth queue is the bandwidth reclamation queue, which loops back
* to the full-speed control queue.
*/
static int uhci_start(struct usb_hcd *hcd)
{
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
int retval = -EBUSY;
int i, port;
unsigned io_size;
dma_addr_t dma_handle;
struct usb_device *udev;
#ifdef CONFIG_PROC_FS
struct proc_dir_entry *ent;
#endif
io_size = pci_resource_len(to_pci_dev(uhci_dev(uhci)), hcd->region);
#ifdef CONFIG_PROC_FS
ent = create_proc_entry(hcd->self.bus_name, S_IFREG|S_IRUGO|S_IWUSR, uhci_proc_root);
if (!ent) {
dev_err(uhci_dev(uhci), "couldn't create uhci proc entry\n");
retval = -ENOMEM;
goto err_create_proc_entry;
}
ent->data = uhci;
ent->proc_fops = &uhci_proc_operations;
ent->size = 0;
uhci->proc_entry = ent;
#endif
uhci->fsbr = 0;
uhci->fsbrtimeout = 0;
spin_lock_init(&uhci->schedule_lock);
INIT_LIST_HEAD(&uhci->qh_remove_list);
INIT_LIST_HEAD(&uhci->td_remove_list);
INIT_LIST_HEAD(&uhci->urb_remove_list);
INIT_LIST_HEAD(&uhci->urb_list);
INIT_LIST_HEAD(&uhci->complete_list);
init_waitqueue_head(&uhci->waitqh);
uhci->fl = dma_alloc_coherent(uhci_dev(uhci), sizeof(*uhci->fl),
&dma_handle, 0);
if (!uhci->fl) {
dev_err(uhci_dev(uhci), "unable to allocate "
"consistent memory for frame list\n");
goto err_alloc_fl;
}
memset((void *)uhci->fl, 0, sizeof(*uhci->fl));
uhci->fl->dma_handle = dma_handle;
uhci->td_pool = dma_pool_create("uhci_td", uhci_dev(uhci),
sizeof(struct uhci_td), 16, 0);
if (!uhci->td_pool) {
dev_err(uhci_dev(uhci), "unable to create td dma_pool\n");
goto err_create_td_pool;
}
uhci->qh_pool = dma_pool_create("uhci_qh", uhci_dev(uhci),
sizeof(struct uhci_qh), 16, 0);
if (!uhci->qh_pool) {
dev_err(uhci_dev(uhci), "unable to create qh dma_pool\n");
goto err_create_qh_pool;
}
/* Initialize the root hub */
/* UHCI specs says devices must have 2 ports, but goes on to say */
/* they may have more but give no way to determine how many they */
/* have. However, according to the UHCI spec, Bit 7 is always set */
/* to 1. So we try to use this to our advantage */
for (port = 0; port < (io_size - 0x10) / 2; port++) {
unsigned int portstatus;
portstatus = inw(uhci->io_addr + 0x10 + (port * 2));
if (!(portstatus & 0x0080))
break;
}
if (debug)
dev_info(uhci_dev(uhci), "detected %d ports\n", port);
/* This is experimental so anything less than 2 or greater than 8 is */
/* something weird and we'll ignore it */
if (port < 2 || port > UHCI_RH_MAXCHILD) {
dev_info(uhci_dev(uhci), "port count misdetected? "
"forcing to 2 ports\n");
port = 2;
}
uhci->rh_numports = port;
udev = usb_alloc_dev(NULL, &hcd->self, 0);
if (!udev) {
dev_err(uhci_dev(uhci), "unable to allocate root hub\n");
goto err_alloc_root_hub;
}
uhci->term_td = uhci_alloc_td(uhci, udev);
if (!uhci->term_td) {
dev_err(uhci_dev(uhci), "unable to allocate terminating TD\n");
goto err_alloc_term_td;
}
for (i = 0; i < UHCI_NUM_SKELQH; i++) {
uhci->skelqh[i] = uhci_alloc_qh(uhci, udev);
if (!uhci->skelqh[i]) {
dev_err(uhci_dev(uhci), "unable to allocate QH\n");
goto err_alloc_skelqh;
}
}
/*
* 8 Interrupt queues; link all higher int queues to int1,
* then link int1 to control and control to bulk
*/
uhci->skel_int128_qh->link =
uhci->skel_int64_qh->link =
uhci->skel_int32_qh->link =
uhci->skel_int16_qh->link =
uhci->skel_int8_qh->link =
uhci->skel_int4_qh->link =
uhci->skel_int2_qh->link =
cpu_to_le32(uhci->skel_int1_qh->dma_handle) | UHCI_PTR_QH;
uhci->skel_int1_qh->link = cpu_to_le32(uhci->skel_ls_control_qh->dma_handle) | UHCI_PTR_QH;
uhci->skel_ls_control_qh->link = cpu_to_le32(uhci->skel_fs_control_qh->dma_handle) | UHCI_PTR_QH;
uhci->skel_fs_control_qh->link = cpu_to_le32(uhci->skel_bulk_qh->dma_handle) | UHCI_PTR_QH;
uhci->skel_bulk_qh->link = cpu_to_le32(uhci->skel_term_qh->dma_handle) | UHCI_PTR_QH;
/* This dummy TD is to work around a bug in Intel PIIX controllers */
uhci_fill_td(uhci->term_td, 0, (UHCI_NULL_DATA_SIZE << 21) |
(0x7f << TD_TOKEN_DEVADDR_SHIFT) | USB_PID_IN, 0);
uhci->term_td->link = cpu_to_le32(uhci->term_td->dma_handle);
uhci->skel_term_qh->link = UHCI_PTR_TERM;
uhci->skel_term_qh->element = cpu_to_le32(uhci->term_td->dma_handle);
/*
* Fill the frame list: make all entries point to the proper
* interrupt queue.
*
* The interrupt queues will be interleaved as evenly as possible.
* There's not much to be done about period-1 interrupts; they have
* to occur in every frame. But we can schedule period-2 interrupts
* in odd-numbered frames, period-4 interrupts in frames congruent
* to 2 (mod 4), and so on. This way each frame only has two
* interrupt QHs, which will help spread out bandwidth utilization.
*/
for (i = 0; i < UHCI_NUMFRAMES; i++) {
int irq;
/*
* ffs (Find First bit Set) does exactly what we need:
* 1,3,5,... => ffs = 0 => use skel_int2_qh = skelqh[6],
* 2,6,10,... => ffs = 1 => use skel_int4_qh = skelqh[5], etc.
* ffs > 6 => not on any high-period queue, so use
* skel_int1_qh = skelqh[7].
* Add UHCI_NUMFRAMES to insure at least one bit is set.
*/
irq = 6 - (int) __ffs(i + UHCI_NUMFRAMES);
if (irq < 0)
irq = 7;
/* Only place we don't use the frame list routines */
uhci->fl->frame[i] = UHCI_PTR_QH |
cpu_to_le32(uhci->skelqh[irq]->dma_handle);
}
/*
* Some architectures require a full mb() to enforce completion of
* the memory writes above before the I/O transfers in start_hc().
*/
mb();
if ((retval = start_hc(uhci)) != 0)
goto err_alloc_skelqh;
init_stall_timer(hcd);
udev->speed = USB_SPEED_FULL;
if (hcd_register_root(udev, &uhci->hcd) != 0) {
dev_err(uhci_dev(uhci), "unable to start root hub\n");
retval = -ENOMEM;
goto err_start_root_hub;
}
return 0;
/*
* error exits:
*/
err_start_root_hub:
reset_hc(uhci);
del_timer_sync(&uhci->stall_timer);
err_alloc_skelqh:
for (i = 0; i < UHCI_NUM_SKELQH; i++)
if (uhci->skelqh[i]) {
uhci_free_qh(uhci, uhci->skelqh[i]);
uhci->skelqh[i] = NULL;
}
uhci_free_td(uhci, uhci->term_td);
uhci->term_td = NULL;
err_alloc_term_td:
usb_put_dev(udev);
err_alloc_root_hub:
dma_pool_destroy(uhci->qh_pool);
uhci->qh_pool = NULL;
err_create_qh_pool:
dma_pool_destroy(uhci->td_pool);
uhci->td_pool = NULL;
err_create_td_pool:
dma_free_coherent(uhci_dev(uhci), sizeof(*uhci->fl),
uhci->fl, uhci->fl->dma_handle);
uhci->fl = NULL;
err_alloc_fl:
#ifdef CONFIG_PROC_FS
remove_proc_entry(hcd->self.bus_name, uhci_proc_root);
uhci->proc_entry = NULL;
err_create_proc_entry:
#endif
return retval;
}
static void uhci_stop(struct usb_hcd *hcd)
{
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
del_timer_sync(&uhci->stall_timer);
/*
* At this point, we're guaranteed that no new connects can be made
* to this bus since there are no more parents
*/
reset_hc(uhci);
spin_lock_irq(&uhci->schedule_lock);
uhci_free_pending_qhs(uhci);
uhci_free_pending_tds(uhci);
uhci_remove_pending_urbps(uhci);
uhci_finish_completion(hcd, NULL);
uhci_free_pending_qhs(uhci);
uhci_free_pending_tds(uhci);
spin_unlock_irq(&uhci->schedule_lock);
/* Wake up anyone waiting for an URB to complete */
wake_up_all(&uhci->waitqh);
release_uhci(uhci);
}
#ifdef CONFIG_PM
static int uhci_suspend(struct usb_hcd *hcd, u32 state)
{
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
/* Don't try to suspend broken motherboards, reset instead */
if (suspend_allowed(uhci)) {
suspend_hc(uhci);
uhci->saved_framenumber =
inw(uhci->io_addr + USBFRNUM) & 0x3ff;
} else
reset_hc(uhci);
return 0;
}
static int uhci_resume(struct usb_hcd *hcd)
{
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
int rc;
pci_set_master(to_pci_dev(uhci_dev(uhci)));
if (uhci->state == UHCI_SUSPENDED) {
/*
* Some systems don't maintain the UHCI register values
* during a PM suspend/resume cycle, so reinitialize
* the Frame Number, Framelist Base Address, Interrupt
* Enable, and Legacy Support registers.
*/
pci_write_config_word(to_pci_dev(uhci_dev(uhci)), USBLEGSUP,
0);
outw(uhci->saved_framenumber, uhci->io_addr + USBFRNUM);
outl(uhci->fl->dma_handle, uhci->io_addr + USBFLBASEADD);
outw(USBINTR_TIMEOUT | USBINTR_RESUME | USBINTR_IOC |
USBINTR_SP, uhci->io_addr + USBINTR);
uhci->resume_detect = 1;
pci_write_config_word(to_pci_dev(uhci_dev(uhci)), USBLEGSUP,
USBLEGSUP_DEFAULT);
} else {
reset_hc(uhci);
if ((rc = start_hc(uhci)) != 0)
return rc;
}
uhci->hcd.state = USB_STATE_RUNNING;
return 0;
}
#endif
static struct usb_hcd *uhci_hcd_alloc(void)
{
struct uhci_hcd *uhci;
uhci = (struct uhci_hcd *)kmalloc(sizeof(*uhci), GFP_KERNEL);
if (!uhci)
return NULL;
memset(uhci, 0, sizeof(*uhci));
uhci->hcd.product_desc = "UHCI Host Controller";
return &uhci->hcd;
}
/* Are there any URBs for a particular device/endpoint on a given list? */
static int urbs_for_ep_list(struct list_head *head,
struct hcd_dev *hdev, int ep)
{
struct urb_priv *urbp;
list_for_each_entry(urbp, head, urb_list) {
struct urb *urb = urbp->urb;
if (hdev == urb->dev->hcpriv && ep ==
(usb_pipeendpoint(urb->pipe) |
usb_pipein(urb->pipe)))
return 1;
}
return 0;
}
/* Are there any URBs for a particular device/endpoint? */
static int urbs_for_ep(struct uhci_hcd *uhci, struct hcd_dev *hdev, int ep)
{
int rc;
spin_lock_irq(&uhci->schedule_lock);
rc = (urbs_for_ep_list(&uhci->urb_list, hdev, ep) ||
urbs_for_ep_list(&uhci->complete_list, hdev, ep) ||
urbs_for_ep_list(&uhci->urb_remove_list, hdev, ep));
spin_unlock_irq(&uhci->schedule_lock);
return rc;
}
/* Wait until all the URBs for a particular device/endpoint are gone */
static void uhci_hcd_endpoint_disable(struct usb_hcd *hcd,
struct hcd_dev *hdev, int endpoint)
{
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
wait_event_interruptible(uhci->waitqh,
!urbs_for_ep(uhci, hdev, endpoint));
}
static int uhci_hcd_get_frame_number(struct usb_hcd *hcd)
{
return uhci_get_current_frame_number(hcd_to_uhci(hcd));
}
static const char hcd_name[] = "uhci_hcd";
static const struct hc_driver uhci_driver = {
.description = hcd_name,
/* Generic hardware linkage */
.irq = uhci_irq,
.flags = HCD_USB11,
/* Basic lifecycle operations */
.reset = uhci_reset,
.start = uhci_start,
#ifdef CONFIG_PM
.suspend = uhci_suspend,
.resume = uhci_resume,
#endif
.stop = uhci_stop,
.hcd_alloc = uhci_hcd_alloc,
.urb_enqueue = uhci_urb_enqueue,
.urb_dequeue = uhci_urb_dequeue,
.endpoint_disable = uhci_hcd_endpoint_disable,
.get_frame_number = uhci_hcd_get_frame_number,
.hub_status_data = uhci_hub_status_data,
.hub_control = uhci_hub_control,
};
static const struct pci_device_id uhci_pci_ids[] = { {
/* handle any USB UHCI controller */
PCI_DEVICE_CLASS(((PCI_CLASS_SERIAL_USB << 8) | 0x00), ~0),
.driver_data = (unsigned long) &uhci_driver,
}, { /* end: all zeroes */ }
};
MODULE_DEVICE_TABLE(pci, uhci_pci_ids);
static struct pci_driver uhci_pci_driver = {
.name = (char *)hcd_name,
.id_table = uhci_pci_ids,
.probe = usb_hcd_pci_probe,
.remove = usb_hcd_pci_remove,
#ifdef CONFIG_PM
.suspend = usb_hcd_pci_suspend,
.resume = usb_hcd_pci_resume,
#endif /* PM */
};
static int __init uhci_hcd_init(void)
{
int retval = -ENOMEM;
printk(KERN_INFO DRIVER_DESC " " DRIVER_VERSION "\n");
if (usb_disabled())
return -ENODEV;
if (debug) {
errbuf = kmalloc(ERRBUF_LEN, GFP_KERNEL);
if (!errbuf)
goto errbuf_failed;
}
#ifdef CONFIG_PROC_FS
uhci_proc_root = create_proc_entry("driver/uhci", S_IFDIR, NULL);
if (!uhci_proc_root)
goto proc_failed;
#endif
uhci_up_cachep = kmem_cache_create("uhci_urb_priv",
sizeof(struct urb_priv), 0, 0, NULL, NULL);
if (!uhci_up_cachep)
goto up_failed;
retval = pci_register_driver(&uhci_pci_driver);
if (retval)
goto init_failed;
return 0;
init_failed:
if (kmem_cache_destroy(uhci_up_cachep))
warn("not all urb_priv's were freed!");
up_failed:
#ifdef CONFIG_PROC_FS
remove_proc_entry("driver/uhci", NULL);
proc_failed:
#endif
if (errbuf)
kfree(errbuf);
errbuf_failed:
return retval;
}
static void __exit uhci_hcd_cleanup(void)
{
pci_unregister_driver(&uhci_pci_driver);
if (kmem_cache_destroy(uhci_up_cachep))
warn("not all urb_priv's were freed!");
#ifdef CONFIG_PROC_FS
remove_proc_entry("driver/uhci", NULL);
#endif
if (errbuf)
kfree(errbuf);
}
module_init(uhci_hcd_init);
module_exit(uhci_hcd_cleanup);
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");